Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Small ; 19(49): e2305026, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596060

ABSTRACT

Ag2 S nanoparticles (NPs) emerge as a unique system that simultaneously features in vivo near-infrared (NIR) imaging, remote heating, and low toxicity thermal sensing. In this work, their capabilities are extended into the fields of optical coherence tomography (OCT), as contrast agents, and NIR probes in both ex vivo and in vivo experiments in eyeballs. The new dual property for ocular imaging is obtained by the preparation of Ag2 S NPs ensembles with a biocompatible amphiphilic block copolymer. Rather than a classical ligand exchange, where surface traps may arise due to incomplete replacement of surface sites, the use of this polymer provides a protective extra layer that preserves the photoluminescence properties of the NPs, and the procedure allows for the controlled preparation of submicrometric scattering centers. The resulting NPs ensembles show extraordinary colloidal stability with time and biocompatibility, enhancing the contrast in OCT with simultaneous NIR imaging in the second biological window.


Subject(s)
Nanoparticles , Tomography, Optical Coherence , Contrast Media , Polymers , Optical Imaging
2.
Nanomedicine ; 43: 102556, 2022 07.
Article in English | MEDLINE | ID: mdl-35390527

ABSTRACT

There is an urgent need for contrast agents to detect the first inflammation stage of atherosclerosis by cardiovascular optical coherence tomography (CV-OCT), the imaging technique with the highest spatial resolution and sensitivity of those used during coronary interventions. Gold nanoshells (GNSs) provide the strongest signal by CV-OCT. GNSs are functionalized with the cLABL peptide that binds specifically to the ICAM-1 molecule upregulated in the first stage of atherosclerosis. Dark field microscopy and CV-OCT are used to evaluate the specific adhesion of these functionalized GNSs to activated endothelial cells. This adhesion is investigated under static and dynamic conditions, for shear stresses comparable to those of physiological conditions. An increase in the scattering signal given by the functionalized GNSs attached to activated cells is observed compared to non-activated cells. Thus, cLABL-functionalized GNSs behave as excellent contrast agents for CV-OCT and promise a novel strategy for clinical molecular imaging of atherosclerosis.


Subject(s)
Atherosclerosis , Tomography, Optical Coherence , Atherosclerosis/diagnostic imaging , Contrast Media , Endothelial Cells , Gold , Humans , Tomography, Optical Coherence/methods
3.
Small ; 17(42): e2103505, 2021 10.
Article in English | MEDLINE | ID: mdl-34554636

ABSTRACT

The implementation of in vivo fluorescence imaging as a reliable diagnostic imaging modality at the clinical level is still far from reality. Plenty of work remains ahead to provide medical practitioners with solid proof of the potential advantages of this imaging technique. To do so, one of the key objectives is to better the optical performance of dedicated contrast agents, thus improving the resolution and penetration depth achievable. This direction is followed here and the use of a novel AgInSe2 nanoparticle-based contrast agent (nanocapsule) is reported for fluorescence imaging. The use of an Ag2 Se seeds-mediated synthesis method allows stabilizing an uncommon orthorhombic crystal structure, which endows the material with emission in the second biological window (1000-1400 nm), where deeper penetration in tissues is achieved. The nanocapsules, obtained via phospholipid-assisted encapsulation of the AgInSe2 nanoparticles, comply with the mandatory requisites for an imaging contrast agent-colloidal stability and negligible toxicity-and show superior brightness compared with widely used Ag2 S nanoparticles. Imaging experiments point to the great potential of the novel AgInSe2 -based nanocapsules for high-resolution, whole-body in vivo imaging. Their extended permanence time within blood vessels make them especially suitable for prolonged imaging of the cardiovascular system.


Subject(s)
Nanocapsules , Nanoparticles , Quantum Dots , Diagnostic Imaging , Fluorescence , Optical Imaging
4.
Small ; 16(29): e1907171, 2020 07.
Article in English | MEDLINE | ID: mdl-32548926

ABSTRACT

Fast and precise localization of ischemic tissues in the myocardium after an acute infarct is required by clinicians as the first step toward accurate and efficient treatment. Nowadays, diagnosis of a heart attack at early times is based on biochemical blood analysis (detection of cardiac enzymes) or by ultrasound-assisted imaging. Alternative approaches are investigated to overcome the limitations of these classical techniques (time-consuming procedures or low spatial resolution). As occurs in many other fields of biomedicine, cardiological preclinical imaging can also benefit from the fast development of nanotechnology. Indeed, bio-functionalized near-infrared-emitting nanoparticles are herein used for in vivo imaging of the heart after an acute myocardial infarct. Taking advantage of the superior acquisition speed of near-infrared fluorescence imaging, and of the efficient selective targeting of the near-infrared-emitting nanoparticles, in vivo images of the infarcted heart are obtained only a few minutes after the acute infarction event. This work opens an avenue toward cost-effective, fast, and accurate in vivo imaging of the ischemic myocardium after an acute infarct.


Subject(s)
Myocardial Infarction , Nanoparticles , Humans , Luminescence , Myocardial Infarction/diagnostic imaging , Myocardium , Optical Imaging
5.
Small ; 12(39): 5394-5400, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27552716

ABSTRACT

Encapsulation of gold nanorods together with Nd-doped fluorescent nanoparticles in a biocompatible polymer creates multifunctional nanostructures, whose infrared fluorescence allows their subcutaneous localization in biological tissues while also adding the ability to measure the temperature from the emitted light in order to better monitor the light-to-heat conversion of the gold nanorods during photothermal therapy.


Subject(s)
Gold/chemistry , Imaging, Three-Dimensional/methods , Mammary Glands, Animal/anatomy & histology , Nanotubes/chemistry , Neodymium/chemistry , Temperature , Animals , Chickens , Female , Fluorescence , Infrared Rays
6.
Small ; 11(13): 1555-61, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25451550

ABSTRACT

3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface. In particular, substitution of cationic species at the surface by other species with higher mobility could lead to UCNPs trapping with constants comparable to those of spherical metallic nanoparticles.


Subject(s)
Nanoparticles , Optics and Photonics , Fluorescence , Microscopy, Electron, Transmission , Surface Properties
7.
Mater Horiz ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39355934

ABSTRACT

Highly emissive Ag2S nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that Ag2S-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities. In contrast, water-transferred Ag2S-based NCs with an initial PLQY of 2% in water exhibit improved robustness against temperature changes, enabling improved imaging performance.

8.
Adv Mater ; 35(33): e2301819, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37352307

ABSTRACT

In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.


Subject(s)
Nanoparticles , Thermometry , Nanogels , Reproducibility of Results , Thermometers , Polymers , Tomography, Optical Coherence/methods
9.
Cancers (Basel) ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36612098

ABSTRACT

Functionalized upconverting nanoparticles (UCNPs) are promising theragnostic nanomaterials for simultaneous therapeutic and diagnostic purposes. We present two types of non-toxic eosin Y (EY) nanoconjugates derived from UCNPs as novel nanophotosensitizers (nano-PS) and deep-tissue bioimaging agents employing light at 800 nm. This excitation wavelength ensures minimum cell damage, since the absorption of water is negligible, and increases tissue penetration, enhancing the specificity of the photodynamic treatment (PDT). These UCNPs are uniquely qualified to fulfil three important roles: as nanocarriers, as energy-transfer materials, and as contrast agents. First, the UCNPs enable the transport of EY across the cell membrane of living HeLa cells that would not be possible otherwise. This cellular internalization facilitates the use of such EY-functionalized UCNPs as nano-PS and allows the generation of reactive oxygen species (ROS) under 800 nm light inside the cell. This becomes possible due to the upconversion and energy transfer processes within the UCNPs, circumventing the excitation of EY by green light, which is incompatible with deep tissue applications. Moreover, the functionalized UCNPs present deep tissue NIR-II fluorescence under 808 nm excitation, thus demonstrating their potential as bioimaging agents in the NIR-II biological window.

10.
ACS Photonics ; 9(2): 559-566, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35224134

ABSTRACT

Optical coherence tomography (OCT) is an imaging technique currently used in clinical practice to obtain optical biopsies of different biological tissues in a minimally invasive way. Among the contrast agents proposed to increase the efficacy of this imaging method, gold nanoshells (GNSs) are the best performing ones. However, their preparation is generally time-consuming, and they are intrinsically costly to produce. Herein, we propose a more affordable alternative to these contrast agents: Bi2Se3 nanostructured clusters with a desert rose-like morphology prepared via a microwave-assisted method. The structures are prepared in a matter of minutes, feature strong near-infrared extinction properties, and are biocompatible. They also boast a photon-to-heat conversion efficiency of close to 50%, making them good candidates as photothermal therapy agents. In vitro studies evidence the prowess of Bi2Se3 clusters as OCT contrast agents and prove that their performance is comparable to that of GNSs.

11.
Methods Mol Biol ; 2350: 239-251, 2021.
Article in English | MEDLINE | ID: mdl-34331289

ABSTRACT

Lifetime multiplexed imaging refers to the simultaneous labeling of different structures with fluorescent probes that present identical photoluminescence spectra and distinct fluorescence lifetimes. This technique allows extracting quantitative information from multichannel in vivo fluorescence imaging. In vivo lifetime multiplexed imaging requires fluorophores with excitation and emission bands in the near-infrared (NIR) and tunable fluorescence lifetimes, plus an imaging system capable of time-resolved image acquisition and analysis.


Subject(s)
Nanoparticles , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Algorithms , Animals , Female , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Mice , Nanoparticles/chemistry , Optical Imaging/instrumentation , Spectroscopy, Near-Infrared/instrumentation
12.
Adv Healthc Mater ; 10(10): e2002186, 2021 05.
Article in English | MEDLINE | ID: mdl-33594792

ABSTRACT

The unique combination of physical and optical properties of silica (core)/gold (shell) nanoparticles (gold nanoshells) makes them especially suitable for biomedicine. Gold nanoshells are used from high-resolution in vivo imaging to in vivo photothermal tumor treatment. Furthermore, their large scattering cross-section in the second biological window (1000-1700 nm) makes them also especially adequate for molecular optical coherence tomography (OCT). In this work, it is demonstrated that, after suitable functionalization, gold nanoshells in combination with clinical OCT systems are capable of imaging damage in the myocardium following an infarct. Since both inflammation and apoptosis are two of the main mechanisms underlying myocardial damage after ischemia, such damage imaging is achieved by endowing gold nanoshells with selective affinity for the inflammatory marker intercellular adhesion molecule 1 (ICAM-1), and the apoptotic marker phosphatidylserine. The results here presented constitute a first step toward a fast, safe, and accurate diagnosis of damaged tissue within infarcted hearts at the molecular level by means of the highly sensitive OCT interferometric technique.


Subject(s)
Myocardial Infarction , Nanoshells , Gold , Humans , Infarction , Molecular Imaging , Myocardial Infarction/diagnostic imaging
13.
ACS Appl Mater Interfaces ; 12(46): 51273-51284, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33156603

ABSTRACT

Neodymium-doped yttrium aluminum garnet (YAG:Nd3+) has been widely developed during roughly the past 60 years and has been an outstanding fluorescent material. It has been considered as the gold standard among multipurpose solid-state lasers. Yet, the successful downsizing of this system into the nanoregimen has been elusive, so far. Indeed, the synthesis of a garnet structure at the nanoscale, with enough crystalline quality for optical applications, was found to be quite challenging. Here, we present an improved solvothermal synthesis method producing YAG:Nd3+ nanocrystals of remarkably good structural quality. Adequate surface functionalization using asymmetric double-hydrophilic block copolymers, constituted of a metal-binding block and a neutral water-soluble block, provides stabilized YAG:Nd3+ nanocrystals with long-term colloidal stability in aqueous suspensions. These newly stabilized nanoprobes offer spectroscopic quality (long lifetimes, narrow emission lines, and large Stokes shifts) close to that of bulk YAG:Nd3+. The narrow emission lines of YAG:Nd3+ nanocrystals are exploited by differential infrared fluorescence imaging, thus achieving an autofluorescence-free in vivo readout. In addition, nanothermometry measurements, based on the ratiometric fluorescence of the stabilized YAG:Nd3+ nanocrystals, are demonstrated. The progress here reported paves the way for the implementation of this new stabilized YAG:Nd3+ system in the preclinical arena.


Subject(s)
Aluminum/chemistry , Nanoparticles/chemistry , Neodymium/chemistry , Optical Imaging , Polymers/chemistry , Yttrium/chemistry , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Contrast Media/chemistry , Lasers, Solid-State , Mice , Nanoparticles/administration & dosage
14.
Nanoscale ; 11(43): 21009, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31651016

ABSTRACT

Correction for 'Perspectives for Ag2S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality' by Yingli Shen, et al., Nanoscale, 2019, DOI: 10.1039/c9nr05733a.

15.
Nanoscale ; 11(41): 19251-19264, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31560003

ABSTRACT

Research on near-infrared (NIR) bioimaging has progressed very quickly in the past few years, as fluorescence imaging is reaching a credible implementation as a preclinical technique. The applications of NIR bioimaging in theranostics have contributed to its increasing impact. This has brought about the development of novel technologies and, simultaneously, of new contrast agents capable of acting as efficient NIR optical probes. Among these probes, Ag2S nanoparticles (NPs) have attracted increasing attention due to their temperature-sensitive NIR-II emission, which can be exploited for deep-tissue imaging and thermometry, and their heat delivery capabilities. This multifunctionality makes Ag2S NPs ideal candidates for theranostics. This review presents a critical analysis of the synthesis routes, properties and optical features of Ag2S NPs. We also discuss the latest and most remarkable achievements enabled by these NPs in preclinical imaging and theranostics, together with a critical assessment of their potential to face forthcoming challenges in biomedicine.


Subject(s)
Nanomedicine , Nanoparticles/chemistry , Silver Compounds/chemistry , Animals , Biosensing Techniques/methods , Humans , Neoplasms/diagnostic imaging , Spectroscopy, Near-Infrared
16.
Nanoscale ; 10(27): 12935-12956, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29953157

ABSTRACT

The current status of the use of core-shell rare-earth-doped nanoparticles in biomedical applications is reviewed in detail. The different core-shell rare-earth-doped nanoparticles developed so far are described and the most relevant examples of their application in imaging, sensing, and therapy are summarized. In addition, the advantages and disadvantages they present are discussed. Finally, a critical opinion of their potential application in real life biomedicine is given.


Subject(s)
Metals, Rare Earth , Nanoparticles , Biomedical Research
17.
Nanoscale ; 10(37): 17771-17780, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30215442

ABSTRACT

Biomedicine is continuously demanding new luminescent materials to be used as optical probes for the acquisition of high resolution, high contrast and high penetration in vivo images. These materials, in combination with advanced techniques, could constitute the first step towards new diagnosis and therapy tools. In this work, we report on the synthesis of long lifetime rare-earth-doped fluoride nanoparticles by adopting different strategies: core/shell and dopant engineering. The here developed nanoparticles show intense infrared emission in the second biological window with a long luminescence lifetime close to 1 millisecond. These two properties make the here presented nanoparticles excellent candidates for time-gated infrared optical bioimaging. Indeed, their potential application as optical imaging contrast agents for autofluorescence-free in vivo small animal imaging has been demonstrated, allowing high contrast real-time tracking of gastrointestinal absorption of nanoparticles and transcranial imaging of intracerebrally injected nanoparticles in the murine brain.


Subject(s)
Fluorides/chemistry , Metals, Rare Earth/chemistry , Nanoparticles , Optical Imaging , Animals , Luminescence , Mice , Mice, Inbred C57BL , Neuroimaging
18.
ACS Nano ; 12(5): 4362-4368, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29697971

ABSTRACT

Advanced diagnostic procedures are required to satisfy the continuously increasing demands of modern biomedicine while also addressing the need for cost reduction in public health systems. The development of infrared luminescence-based techniques for in vivo imaging as reliable alternatives to traditional imaging enables applications with simpler and more cost-effective apparatus. To further improve the information provided by in vivo luminescence images, the design and fabrication of enhanced infrared-luminescent contrast agents is required. In this work, we demonstrate how simple dopant engineering can lead to infrared-emitting rare-earth-doped nanoparticles with tunable (0.1-1.5 ms) and medium-independent luminescence lifetimes. The combination of these tunable nanostructures with time-gated infrared imaging and time domain analysis is employed to obtain multiplexed in vivo images that are used for complex biodistribution studies.


Subject(s)
Metals, Rare Earth/chemistry , Nanoparticles/chemistry , Optical Imaging , Animals , Injections, Intravenous , Luminescence , Metals, Rare Earth/administration & dosage , Mice , Nanoparticles/administration & dosage , Particle Size , Surface Properties
19.
Adv Mater ; 28(46): 10188-10193, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27711997

ABSTRACT

The always present and undesired contribution of autofluorescence is here completely avoided by combining a simple time gating technology with long lifetime neodymium doped infrared-emitting nanoparticles.


Subject(s)
Fluorescence , Infrared Rays , Nanoparticles/chemistry , Neodymium/chemistry , Optical Imaging/methods , Animals , Mice , Time Factors
20.
ACS Appl Mater Interfaces ; 8(2): 1406-14, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26713893

ABSTRACT

Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology , Animals , Fluorescence , Magnetite Nanoparticles/therapeutic use , Mice , Nanostructures/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL