Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
PLoS Genet ; 20(5): e1011289, 2024 May.
Article in English | MEDLINE | ID: mdl-38787919

ABSTRACT

The tempo and mode of adaptation depends on the availability of beneficial alleles. Genetic interactions arising from gene networks can restrict this availability. However, the extent to which networks affect adaptation remains largely unknown. Current models of evolution consider additive genotype-phenotype relationships while often ignoring the contribution of gene interactions to phenotypic variance. In this study, we model a quantitative trait as the product of a simple gene regulatory network, the negative autoregulation motif. Using forward-time genetic simulations, we measure adaptive walks towards a phenotypic optimum in both additive and network models. A key expectation from adaptive walk theory is that the distribution of fitness effects of new beneficial mutations is exponential. We found that both models instead harbored distributions with fewer large-effect beneficial alleles than expected. The network model also had a complex and bimodal distribution of fitness effects among all mutations, with a considerable density at deleterious selection coefficients. This behavior is reminiscent of the cost of complexity, where correlations among traits constrain adaptation. Our results suggest that the interactions emerging from genetic networks can generate complex and multimodal distributions of fitness effects.


Subject(s)
Gene Regulatory Networks , Genetic Fitness , Models, Genetic , Mutation , Selection, Genetic , Selection, Genetic/genetics , Phenotype , Adaptation, Physiological/genetics , Alleles , Evolution, Molecular , Genotype , Computer Simulation
2.
Mol Ecol ; 33(4): e17280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38247305

ABSTRACT

Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.


Subject(s)
Helianthus , Selection, Genetic , Humans , Gene Frequency , Chromosome Mapping , Ecotype , Genomics , Helianthus/genetics
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34789571

ABSTRACT

Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant's shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.


Subject(s)
Gravitropism/physiology , Infertility , Plant Shoots/physiology , Senecio/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Arabidopsis Proteins , Australia , Genetic Variation , Indoleacetic Acids/metabolism , Phenotype , Selection, Genetic , Senecio/genetics , Sulfurtransferases
4.
Mol Ecol ; 32(20): 5575-5589, 2023 10.
Article in English | MEDLINE | ID: mdl-37740681

ABSTRACT

Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.


Subject(s)
Genome , Selection, Genetic , Humans , Phenotype , Indoleacetic Acids , Genomics
5.
Mol Biol Evol ; 38(11): 4805-4821, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34254128

ABSTRACT

Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow.


Subject(s)
Ecotype , Senecio , Australia , Gene Flow , Phylogeny , Senecio/genetics
6.
New Phytol ; 226(2): 326-344, 2020 04.
Article in English | MEDLINE | ID: mdl-31951018

ABSTRACT

Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.


Subject(s)
Senecio , Environment , Genotype , Models, Biological , Phenotype , Senecio/genetics
7.
Am Nat ; 191(4): E108-E128, 2018 04.
Article in English | MEDLINE | ID: mdl-29570402

ABSTRACT

Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.


Subject(s)
Adaptation, Biological , Biological Evolution , Genetic Variation , Selection, Genetic , Senecio/genetics , Phenotype , Senecio/anatomy & histology
9.
Ecology ; 99(6): 1391-1401, 2018 06.
Article in English | MEDLINE | ID: mdl-29856491

ABSTRACT

Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments. We used multiple populations from four ecotypes of an Australian native wildflower (Senecio pinnatifolius) in reciprocal transplants to explore how fitness tradeoffs arise across ontogeny. We then assessed whether the survival probability for plants from native and foreign populations was contingent on reaching key developmental stages. We found that fitness tradeoffs emerged as ontogeny progressed when native plants were more successful than foreign plants at reaching seedling establishment and maturity. Native and foreign plants that failed to reach seedling establishment died at the same rate, but plants from foreign populations died quicker than native plants after reaching seedling establishment, and died quicker regardless of whether they reached sexual maturity or not. Development rates were similar for native and foreign populations, but changed depending on the environment. Together, our results suggest that natural selection for environment-specific traits early in life history created tradeoffs between contrasting environments. Plants from foreign populations were either unable to develop to seedling establishment, or they suffered increased mortality as a consequence of reaching seedling establishment. The observation of tradeoffs together with environmentally dependent changes in development rate suggest that foreign environments induce organisms to develop at a rate different from their native habitat, incurring consequences for lifetime fitness and population divergence.


Subject(s)
Adaptation, Biological , Senecio , Australia , Ecosystem , Selection, Genetic
10.
Mol Ecol ; 26(14): 3687-3699, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28429828

ABSTRACT

The build-up of the phenotypic differences that distinguish species has long intrigued biologists. These differences are often inherited as stable polymorphisms that allow the cosegregation of adaptive variation within species, and facilitate the differentiation of complex phenotypes between species. It has been suggested that the clustering of adaptive loci could facilitate this process, but evidence is still scarce. Here, we used QTL analysis to study the genetic basis of phenotypic differentiation between coastal populations of the Australian wildflower Senecio lautus. We found that a genomic region consistently governs variation in several of the traits that distinguish these contrasting forms. Additionally, some of the taxon-specific traits controlled by this QTL cluster have evolved repeatedly during the adaptation to the same habitats, suggesting that it could mediate divergence between locally adapted forms. This cluster contains footprints of divergent natural selection across the range of S. lautus, which suggests that it could have been instrumental for the rapid diversification of this species.


Subject(s)
Genome, Plant , Quantitative Trait Loci , Selection, Genetic , Senecio/genetics , Australia , Genetic Variation , Genomics , Phenotype
11.
Mol Ecol ; 26(9): 2466-2481, 2017 May.
Article in English | MEDLINE | ID: mdl-28141911

ABSTRACT

Some of the best evidence for rapid evolutionary change comes from studies of archipelagos and oceanic islands. City parks are analogous systems as they create geographically isolated green spaces that differ in size, structure and complexity. Very little, however, is known about whether city parks within a single urban centre drive selection and result in the diversification of native species. Here, we provide evidence for the rapid genetic and morphological differentiation of a native lizard (Intellagama lesueurii) at four geographically close yet unconnected parks within one city. Year of establishment of each city park varied from 1855 (oldest) to 2001 (youngest) equating to a generation time range of 32 to three generations. Genetic divergence among city park populations was large despite the small pairwise geographic distances (<5 km) and found to be two to three times higher for microsatellites and three to 33 times higher for mtDNA relative to nonurban populations. Patterns of morphological differentiation were also found to be most extensive among the four city park populations. In contrast to nonurban populations, city park populations showed significant differentiation in relative body size, relative head and limb morphology and relative forelimb and hindlimb length. Crucially, we show that these patterns of differentiation are unlikely to have been caused by founder events and/or drift alone. Our results suggest that city park 'archipelagos' could represent theatres for rapid evolution that may, in time, favour adaptive diversification.


Subject(s)
Genetics, Population , Lizards/anatomy & histology , Lizards/genetics , Animals , Cities , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Drift , Genetic Variation , Microsatellite Repeats , Queensland
13.
Plant Cell ; 26(3): 981-95, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24681618

ABSTRACT

The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1's additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure.


Subject(s)
Evolution, Molecular , Peptides/genetics , Prealbumin/genetics , Amino Acid Sequence , Molecular Sequence Data , Peptides/chemistry , Phylogeny , Prealbumin/chemistry , Protein Precursors/chemistry , Protein Precursors/genetics , Seeds/genetics , Sequence Homology, Amino Acid
14.
Proc Biol Sci ; 283(1841)2016 10 26.
Article in English | MEDLINE | ID: mdl-27798297

ABSTRACT

Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations.


Subject(s)
Gene Flow , Genetic Speciation , Models, Genetic , Recombination, Genetic , Adaptation, Physiological , Genetic Drift , Selection, Genetic
16.
New Phytol ; 207(4): 968-84, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25944305

ABSTRACT

Reproductive isolation in plants occurs through multiple barriers that restrict gene flow between populations, but their origins remain uncertain. Work in the past decade has shown that postpollination barriers, such as the failure to form hybrid seeds or sterility of hybrid offspring, are often less strong than prepollination barriers. Evidence implicates multiple evolutionary forces in the origins of reproductive barriers, including mutation, stochastic processes and natural selection. Although adaptation to different environments is a common element of reproductive isolation, genomic conflicts also play a role, including female meiotic drive. The genetic basis of some reproductive barriers, particularly flower colour influencing pollinator behaviour, is well understood in some species, but the genetic changes underlying many other barriers, especially pollen-stylar interactions, are largely unknown. Postpollination barriers appear to accumulate at a faster rate in annuals compared with perennials, due in part to chromosomal rearrangements. Chromosomal changes can be important isolating barriers in themselves but may also reduce the recombination of genes contributing to isolation. Important questions for the next decade include identifying the evolutionary forces responsible for chromosomal rearrangements, determining how often prezygotic barriers arise due to selection against hybrids, and establishing the relative importance of genomic conflicts in speciation.


Subject(s)
Plants , Reproductive Isolation , Biological Evolution , Genetic Variation , Geography , Plants/genetics , Time Factors
17.
New Phytol ; 203(1): 323-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24684207

ABSTRACT

Speciation with gene flow, or the evolution of reproductive isolation between interbreeding populations, remains a controversial problem in evolution. This is because gene flow erodes the adaptive differences that selection creates between populations. Here, we use a combination of common garden experiments in the field and in the glasshouse to investigate what ecological and genetic mechanisms prevent gene flow and maintain morphological and genetic differentiation between coastal parapatric populations of the Australian groundsel Senecio lautus. We discovered that in each habitat extrinsic reproductive barriers prevented gene flow, whereas intrinsic barriers in F1 hybrids were weak. In the field, herbivores played a major role in preventing gene flow, but glasshouse experiments demonstrated that soil type also created variable selective pressures both locally and on a greater geographic scale. Our experimental results demonstrate that interfertile plant populations adapting to contrasting environments may diverge as a consequence of concurrent natural selection acting against migrants and hybrids through multiple mechanisms. These results provide novel insights into the consequences of local adaptation in the origin of strong barriers to gene flow in plants, and suggest that herbivory may play an important role in the early stages of plant speciation.


Subject(s)
Biological Evolution , Gene Flow , Reproductive Isolation , Senecio/genetics , Adaptation, Physiological/genetics , Australia , Ecosystem , Ecotype , Genetic Speciation , Genetic Variation , Genetics, Population , Germination , Senecio/growth & development , Soil
18.
Mol Ecol ; 23(17): 4188-91, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25155715

ABSTRACT

From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space.


Subject(s)
Genetics, Population , Hybridization, Genetic , Populus/genetics , Quercus/growth & development , Quercus/genetics , Selection, Genetic
19.
Mol Ecol ; 22(11): 2941-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23710896

ABSTRACT

Instances of parallel ecotypic divergence where adaptation to similar conditions repeatedly cause similar phenotypic changes in closely related organisms are useful for studying the role of ecological selection in speciation. Here we used a combination of traditional and next generation genotyping techniques to test for the parallel divergence of plants from the Senecio lautus complex, a phenotypically variable groundsel that has adapted to disparate environments in the South Pacific. Phylogenetic analysis of a broad selection of Senecio species showed that members of the S. lautus complex form a distinct lineage that has diversified recently in Australasia. An inspection of thousands of polymorphisms in the genome of 27 natural populations from the S. lautus complex in Australia revealed a signal of strong genetic structure independent of habitat and phenotype. Additionally, genetic differentiation between populations was correlated with the geographical distance separating them, and the genetic diversity of populations strongly depended on geographical location. Importantly, coastal forms appeared in several independent phylogenetic clades, a pattern that is consistent with the parallel evolution of these forms. Analyses of the patterns of genomic differentiation between populations further revealed that adjacent populations displayed greater genomic heterogeneity than allopatric populations and are differentiated according to variation in soil composition. These results are consistent with a process of parallel ecotypic divergence in face of gene flow.


Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Selection, Genetic , Senecio/genetics , Australasia , Biological Evolution , Cell Lineage , Gene Flow , Genetic Drift , Genetic Speciation , Genetic Variation , Genetics, Population , Genome , Genotype , Geography , Molecular Sequence Data , Phenotype , Phylogeny , Polymorphism, Single Nucleotide
20.
Math Biosci ; 366: 109089, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37914024

ABSTRACT

Multidisciplinary approaches can significantly advance our understanding of complex systems. For instance, gene co-expression networks align prior knowledge of biological systems with studies in graph theory, emphasising pairwise gene to gene interactions. In this paper, we extend these ideas, promoting hypergraphs as an investigative tool for studying multi-way interactions in gene expression data. Additional freedoms are achieved by representing individual genes with hyperedges, and simultaneously testing each gene against many features/vertices. Further gene/hyperedge interactions can be captured and explored using the line graph representations, a technique that reduces the complexity of dense hypergraphs. Such an approach provides access to graph centrality measures, which identifies salient features within a data set. For instance dominant or hub-like hyperedges, leading to key knowledge on gene expression. The validity of this approach is established through the study of gene expression data for the plant species Senecio lautus and results will be interpreted within this biological setting.


Subject(s)
Algorithms , Gene Regulatory Networks , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL