ABSTRACT
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.
Subject(s)
Antibodies, Viral , Antibody Specificity , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Antibodies, Viral/immunology , Antibody Specificity/immunology , Influenza, Human/immunology , Epitopes/immunology , Animals , Deep LearningABSTRACT
There is growing appreciation for neuraminidase (NA) as an influenza vaccine target; however, its antigenicity remains poorly characterized. In this study, we isolated three broadly reactive N2 antibodies from the plasmablasts of a single vaccinee, including one that cross-reacts with NAs from seasonal H3N2 strains spanning five decades. Although these three antibodies have diverse germline usages, they recognize similar epitopes that are distant from the NA active site and instead involve the highly conserved underside of NA head domain. We also showed that all three antibodies confer prophylactic and therapeutic protection inĀ vivo, due to both Fc effector functions and NA inhibition through steric hindrance. Additionally, the contribution of Fc effector functions to protection inĀ vivo inversely correlates with viral growth inhibition activity inĀ vitro. Overall, our findings advance the understanding of NA antibody response and provide important insights into the development of a broadly protective influenza vaccine.
Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Humans , Influenza, Human/prevention & control , Neuraminidase , Orthomyxoviridae Infections/prevention & control , Influenza A Virus, H3N2 Subtype , Epitopes , Antibodies, Viral , Antibodies, Monoclonal , Vaccination , Hemagglutinin Glycoproteins, Influenza VirusABSTRACT
While native CO2 -reducing enzymes display remarkable catalytic efficiency and product selectivity, few artificial biocatalysts have been engineered to allow understanding how the native enzymes work. To address this issue, we report cobalt porphyrin substituted myoglobin (CoMb) as a homogeneous catalyst for photo-driven CO2 to CO conversion in water. The activity and product selectivity were optimized by varying pH and concentrations of the enzyme and the photosensitizer. Up to 2000 TON(CO) was attained at low enzyme concentrations with low product selectivity (15 %), while a product selectivity of 74 % was reached by increasing the enzyme loading but with a compromised TON(CO). The efficiency of CO generation and overall TON(CO) were further improved by introducing positively charged residues (Lys or Arg) near the active stie of CoMb, which demonstrates the value of tuning the enzyme secondary coordination sphere to enhance the CO2 -reducing performance of a protein-based photocatalytic system.
Subject(s)
Carbon Dioxide , Carrier Proteins , Water , Myoglobin , OxygenABSTRACT
Broadly neutralizing antibodies (bnAbs) typically evolve cross-reactivity breadth through acquiring somatic hypermutations. While evolution of breadth requires improvement of binding to multiple antigenic variants, most experimental evolution platforms select against only one antigenic variant at a time. In this study, a yeast display library-on-library approach was applied to delineate the affinity maturation of a betacoronavirus bnAb, S2P6, against 27 spike stem helix peptides in a single experiment. Our results revealed that the binding affinity landscape of S2P6 varies among different stem helix peptides. However, somatic hypermutations that confer general improvement in binding affinity across different stem helix peptides could also be identified. We further showed that a key somatic hypermutation for breadth expansion involves long-range interaction. Overall, our work not only provides a proof-of-concept for using a library-on-library approach to analyze the evolution of antibody breadth, but also has important implications for the development of broadly protective vaccines.
ABSTRACT
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Subject(s)
Antibodies, Neutralizing , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , COVID-19/virology , COVID-19/immunology , Animals , Antibodies, Viral/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Chlorocebus aethiops , HEK293 Cells , Vero Cells , Epitopes/immunology , Epitopes/genetics , Cell Line , MiceABSTRACT
Antibody discovery is crucial for developing therapeutics and vaccines as well as understanding adaptive immunity. However, the lack of approaches to synthesize antibodies with defined sequences in a high-throughput manner represents a major bottleneck in antibody discovery. Here, we presented oPool+ display, which combines oligo pool synthesis and mRNA display to construct and characterize many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool+ display to rapidly screen the binding activity of >300 natively paired influenza hemagglutinin (HA) antibodies against the conserved HA stem domain. Structural analysis of 16.ND.92, one of the identified HA stem antibodies, revealed a unique binding mode distinct from other known broadly neutralizing HA stem antibodies with convergent sequence features. Yet, despite such differences, 16.ND.92 remained broadly reactive and conferred in vivo protection. Overall, this study not only established an experimental platform that can be applied in both research and therapeutics to accelerate antibody discovery, but also provides molecular insights into antibody responses to the influenza HA stem, which is a major target for universal influenza vaccine development.
ABSTRACT
The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.
Subject(s)
Epistasis, Genetic , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Animals , Mice , Binding Sites , Influenza, Human/virology , Mutation , Crystallography, X-Ray , Influenza Vaccines , Protein Binding , Receptors, Virus/metabolism , Receptors, Virus/genetics , Receptors, Virus/chemistry , FemaleABSTRACT
The ability of the human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V-gene allelic polymorphisms. However, previous studies have provided only limited examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many V-gene allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiments further demonstrate that paratope allelic polymorphisms on both heavy and light chains often abolish antibody binding. We also illustrate the importance of minor V-gene allelic polymorphisms with low frequency in several broadly neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Overall, this study not only highlights the pervasive impact of V-gene allelic polymorphisms on antibody binding but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
Subject(s)
Antibodies , Immunoglobulin Variable Region , Humans , Immunoglobulin Variable Region/genetics , Binding Sites, Antibody , Polymorphism, Genetic , Antibodies, Neutralizing , Antibodies, ViralABSTRACT
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identified mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we showed that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
ABSTRACT
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we establish a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrates a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, we apply this method to a region in the S2 domain that includes the first heptad repeat and central helix. Our results reveal that besides K986P and V987P, several mutations simultaneously improve expression and significantly lower the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , Mutation , Mammals/metabolismABSTRACT
The ability of human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V gene (IGV) allelic polymorphisms. However, previous studies have provided only a limited number of examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many IGV allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiment further demonstrates that paratope allelic mutations on both heavy and light chain often abolish antibody binding. We also illustrate the importance of minor IGV allelic variants with low frequency in several broadly neutralizing antibodies to SARS-CoV-2 and influenza virus. Overall, this study not only highlights the pervasive impact of IGV allelic polymorphisms on antibody binding, but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
ABSTRACT
Increasing the expression level of the SARS-CoV-2 spike (S) protein has been critical for COVID-19 vaccine development. While previous efforts largely focused on engineering the receptor-binding domain (RBD) and the S2 subunit, the amino-terminal domain (NTD) has been long overlooked because of the limited understanding of its biophysical constraints. In this study, the effects of thousands of NTD single mutations on S protein expression were quantified by deep mutational scanning. Our results revealed that in terms of S protein expression, the mutational tolerability of NTD residues was inversely correlated with their proximity to the RBD and S2. We also identified NTD mutations at the interdomain interface that increased S protein expression without altering its antigenicity. Overall, this study not only advances the understanding of the biophysical constraints of the NTD but also provides invaluable insights into S-based immunogen design.
ABSTRACT
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we established a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrated a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, this method was applied to a region in the S2 domain that includes the first heptad repeat and central helix. Our results revealed that besides K986P and V987P, several mutations simultaneously improved expression and significantly lowered the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.