Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Pathol ; 194(1): 30-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37827216

ABSTRACT

Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.


Subject(s)
Lower Urinary Tract Symptoms , Prostatic Hyperplasia , Male , Humans , Mice , Animals , Aged , Androgens/pharmacology , Androgens/metabolism , Prostate/pathology , Prostatic Hyperplasia/metabolism , Antioxidants/pharmacology , Cell Plasticity , Hyperplasia/pathology , Lead/metabolism , Lead/therapeutic use , Mice, Transgenic , Prolactin/metabolism , Prolactin/therapeutic use , Epithelial Cells/metabolism , Lower Urinary Tract Symptoms/metabolism , Lower Urinary Tract Symptoms/pathology
2.
J Allergy Clin Immunol ; 147(4): 1478-1489.e11, 2021 04.
Article in English | MEDLINE | ID: mdl-33338538

ABSTRACT

BACKGROUND: Mixed connective tissue disease (MCTD) is a rare and complex autoimmune disease that presents mixed features with other connective tissue diseases, such as systemic lupus erythematosus, systemic sclerosis, and myositis. It is characterized by high levels of anti-U1 small nuclear ribonucleoprotein 70k autoantibodies and a high incidence of life-threatening pulmonary involvement. The pathophysiology of MCTD is not well understood, and no specific treatment is yet available for the patients. Basophils and IgE play a role in the development of systemic lupus erythematosus and thus represent new therapeutic targets for systemic lupus erythematosus and other diseases involving basophils and IgE in their pathogenesis. OBJECTIVE: We sought to investigate the role of basophils and IgE in the pathophysiology of MCTD. METHODS: Basophil activation status and the presence of autoreactive IgE were assessed in peripheral blood of a cohort of patients with MCTD and in an MCTD-like mouse model. Basophil depletion and IgE-deficient animals were used to investigate the contribution of basophils and IgE in the lung pathology development of this mouse model. RESULTS: Patients with MCTD have a peripheral basopenia and activated blood basophils overexpressing C-C chemokine receptor 3. Autoreactive IgE raised against the main MCTD autoantigen U1 small nuclear ribonucleoprotein 70k were found in nearly 80% of the patients from the cohort. Basophil activation and IgE anti-U1 small nuclear ribonucleoprotein 70k were also observed in the MCTD-like mouse model along with basophil accumulation in lymph nodes and lungs. Basophil depletion dampened lung pathology, and IgE deficiency prevented its development. CONCLUSIONS: Basophils and IgE contribute to MCTD pathophysiology and represent new candidate therapeutic targets for patients with MCTD.


Subject(s)
Autoantibodies/immunology , Basophils/immunology , Immunoglobulin E/immunology , Mixed Connective Tissue Disease/immunology , Ribonucleoprotein, U1 Small Nuclear/immunology , Adult , Animals , Female , Humans , Lung/immunology , Lung/pathology , Lymph Nodes/immunology , Male , Mice, Transgenic , Middle Aged , Mixed Connective Tissue Disease/pathology
3.
Kidney Int ; 97(3): 516-527, 2020 03.
Article in English | MEDLINE | ID: mdl-31866111

ABSTRACT

Here we investigated the role of murine mast cell protease 4 (MCPT4), the functional counterpart of human mast cell chymase, in an experimental model of renal ischemia reperfusion injury, a major cause of acute kidney injury. MCPT4-deficient mice had worsened kidney function compared to wildtype mice. MCPT4 absence exacerbated pathologic neutrophil infiltration in the kidney and increased kidney myeloperoxidase expression, cell death and necrosis. In kidneys with ischemia reperfusion injury, when compared to wildtype mice, MCPT4-deficient mice showed increased surface expression of adhesion molecules necessary for leukocyte extravasation including neutrophil CD162 and endothelial cell CD54. In vitro, human chymase mediated the cleavage of neutrophil expressed CD162 and also CD54, P- and E-Selectin expressed on human glomerular endothelial cells. MCPT4 also dampened systemic neutrophil activation after renal ischemia reperfusion injury as neutrophils expressed more CD11b integrin and produced more reactive oxygen species in MCPT4-deficient mice. Accordingly, after renal injury, neutrophil migration to an inflammatory site distal from the kidney was increased in MCPT4-deficient versus wildtype mice. Thus, contrary to the described overall aggravating role of mast cells, one granule-released mediator, the MCPT4 chymase, exhibits a potent anti-inflammatory function in renal ischemia reperfusion injury by controlling neutrophil extravasation and activation thereby limiting associated damage.


Subject(s)
Acute Kidney Injury , Chymases , Mast Cells/enzymology , Reperfusion Injury , Acute Kidney Injury/prevention & control , Animals , Endothelial Cells , Kidney , Mice , Mice, Inbred C57BL , Neutrophils , Reperfusion Injury/prevention & control
4.
J Immunol ; 198(6): 2374-2382, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28167630

ABSTRACT

Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells. Depletion of mast cells prior to IRI resulted in improved renal function due to diminished local inflammatory cytokine/chemokine levels and neutrophil recruitment to the kidneys after the acute injury phase (48 h post-IRI). Furthermore, although not completely protected, mast cell-depleted mice displayed less organ atrophy and fibrosis than did wild-type mice during the chronic phases (2 and 6 wk post-IRI) of disease development. Conversely, mast cell ablation after the acute phase of IRI had no impact on organ atrophy, tubular necrosis, or fibrosis. Thus, our results suggest a deleterious role of mast cells during the acute inflammatory phase of IRI promoting subsequent fibrosis development, but not during the chronic phase of the disease.


Subject(s)
Acute Kidney Injury/immunology , Kidney/immunology , Mast Cells/immunology , Reperfusion Injury/immunology , Animals , Cell Degranulation , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Fibrosis , Humans , Inflammation Mediators/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Neutrophil Infiltration , Receptors, IgE/genetics
5.
J Immunol ; 199(11): 3914-3924, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29079698

ABSTRACT

Proteinase 3 (PR3) is a myeloid serine protease expressed in neutrophils, monocytes, and macrophages. PR3 has a number of well-characterized proinflammatory functions, including cleaving and activating chemokines and controlling cell survival and proliferation. When presented on the surface of apoptotic neutrophils, PR3 can disrupt the normal anti-inflammatory reprogramming of macrophages following the phagocytosis of apoptotic cells. To better understand the function of PR3 in vivo, we generated a human PR3 transgenic mouse (hPR3Tg). During zymosan-induced peritonitis, hPR3Tg displayed an increased accumulation of neutrophils within the peritoneal cavity compared with wild-type control mice, with no difference in the recruitment of macrophages or B or T lymphocytes. Mice were also subjected to cecum ligation and puncture, a model used to induce peritoneal inflammation through infection. hPR3Tg displayed decreased survival rates in acute sepsis, associated with increased neutrophil extravasation. The decreased survival and increased neutrophil accumulation were associated with the cleavage of annexin A1, a powerful anti-inflammatory protein known to facilitate the resolution of inflammation. Additionally, neutrophils from hPR3Tg displayed enhanced survival during apoptosis compared with controls, and this may also contribute to the increased accumulation observed during the later stages of inflammation. Taken together, our data suggest that human PR3 plays a proinflammatory role during acute inflammatory responses by affecting neutrophil accumulation, survival, and the resolution of inflammation.


Subject(s)
Myeloblastin/metabolism , Neutrophils/immunology , Peritoneal Cavity/pathology , Peritonitis/immunology , Sepsis/immunology , Animals , Annexin A1/metabolism , Apoptosis , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloblastin/genetics , Peritonitis/chemically induced , Phagocytosis , Sepsis/chemically induced , Zymosan
6.
Molecules ; 24(9)2019 May 01.
Article in English | MEDLINE | ID: mdl-31052373

ABSTRACT

Antimicrobial peptides (AMPs) are considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and alternative mechanisms of action compared to conventional antibiotics. Although AMPs present considerable advantages over conventional antibiotics, their clinical and commercial development still have some limitations, because of their potential toxicity, susceptibility to proteases, and high cost of production. To overcome these drawbacks, the use of peptides mimics is anticipated to avoid the proteolysis, while the identification of minimalist peptide sequences retaining antimicrobial activities could bring a solution for the cost issue. We describe here new polycationic ß-amino acids combining these two properties, that we used to design small dipeptides that appeared to be active against Gram-positive and Gram-negative bacteria, selective against prokaryotic versus mammalian cells, and highly stable in human plasma. Moreover, the in vivo data activity obtained in septic mice reveals that the bacterial killing effect allows the control of the infection and increases the survival rate of cecal ligature and puncture (CLP)-treated mice.


Subject(s)
Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemical synthesis , Antimicrobial Cationic Peptides/administration & dosage , Antimicrobial Cationic Peptides/chemical synthesis , Sepsis/drug therapy , Amino Acids/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Disease Models, Animal , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Mice , Microbial Sensitivity Tests , Molecular Mimicry , Proteolysis , Sepsis/etiology , Sepsis/microbiology
7.
Nat Commun ; 15(1): 3389, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649353

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by anti-nuclear autoantibodies whose production is promoted by autoreactive T follicular helper (TFH) cells. During SLE pathogenesis, basophils accumulate in secondary lymphoid organs (SLO), amplify autoantibody production and disease progression through mechanisms that remain to be defined. Here, we provide evidence for a direct functional relationship between TFH cells and basophils during lupus pathogenesis, both in humans and mice. PD-L1 upregulation on basophils and IL-4 production are associated with TFH and TFH2 cell expansions and with disease activity. Pathogenic TFH cell accumulation, maintenance, and function in SLO were dependent on PD-L1 and IL-4 in basophils, which induced a transcriptional program allowing TFH2 cell differentiation and function. Our study establishes a direct mechanistic link between basophils and TFH cells in SLE that promotes autoantibody production and lupus nephritis.


Subject(s)
B7-H1 Antigen , Basophils , Interleukin-4 , Lupus Erythematosus, Systemic , T Follicular Helper Cells , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Autoantibodies/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Basophils/immunology , Basophils/metabolism , Cell Differentiation/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Mice, Inbred C57BL , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
8.
Cell Death Dis ; 14(11): 744, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968262

ABSTRACT

Ferroptosis constitutes a promising therapeutic strategy against cancer by efficiently targeting the highly tumorigenic and treatment-resistant cancer stem cells (CSCs). We previously showed that the lysosomal iron-targeting drug Salinomycin (Sal) was able to eliminate CSCs by triggering ferroptosis. Here, in a well-established breast CSCs model (human mammary epithelial HMLER CD24low/CD44high), we identified that pharmacological inhibition of the mechanistic target of rapamycin (mTOR), suppresses Sal-induced ferroptosis. Mechanistically, mTOR inhibition modulates iron cellular flux and thereby limits iron-mediated oxidative stress. Furthermore, integration of multi-omics data identified mitochondria as a key target of Sal action, leading to profound functional and structural alteration prevented by mTOR inhibition. On top of that, we found that Sal-induced metabolic plasticity is mainly dependent on the mTOR pathway. Overall, our findings provide experimental evidence for the mechanisms of mTOR as a crucial effector of Sal-induced ferroptosis pointing not only that metabolic reprogramming regulates ferroptosis, but also providing proof-of-concept that careful evaluation of such combination therapy (here mTOR and ferroptosis co-targeting) is required in the development of an effective treatment.


Subject(s)
Breast Neoplasms , Ferroptosis , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Iron/metabolism , Neoplastic Stem Cells/metabolism
9.
Cancers (Basel) ; 14(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35954439

ABSTRACT

Background: The molecular and cellular mechanisms that drive castration-resistant prostate cancer (CRPC) remain poorly understood. LSCmed cells defines an FACS-enriched population of castration-tolerant luminal progenitor cells that has been proposed to promote tumorigenesis and CRPC in Pten-deficient mice. The goals of this study were to assess the relevance of LSCmed cells through the analysis of their molecular proximity with luminal progenitor-like cell clusters identified by single-cell (sc)RNA-seq analyses of mouse and human prostates, and to investigate their regulation by in silico-predicted growth factors present in the prostatic microenvironment. Methods: Several bioinformatic pipelines were used for pan-transcriptomic analyses. LSCmed cells isolated by cell sorting from healthy and malignant mouse prostates were characterized using RT-qPCR, immunofluorescence and organoid assays. Results: LSCmed cells match (i) mouse luminal progenitor cell clusters identified in scRNA-seq analyses for which we provide a common 15-gene signature including the previously identified LSCmed marker Krt4, and (ii) Club/Hillock cells of the human prostate. This transcriptional overlap was maintained in cancer contexts. EGFR/ERBB4, IGF-1R and MET pathways were identified as autocrine/paracrine regulators of progenitor, proliferation and differentiation properties of LSCmed cells. The functional redundancy of these signaling pathways allows them to bypass the effect of receptor-targeted pharmacological inhibitors. Conclusions: Based on transcriptomic profile and pharmacological resistance to monotherapies that failed in CRPC patients, this study supports LSCmed cells as a relevant model to investigate the role of castration-tolerant progenitor cells in human prostate cancer progression.

10.
Front Immunol ; 9: 2690, 2018.
Article in English | MEDLINE | ID: mdl-30515167

ABSTRACT

Recent evidences indicate an important role of tissue inflammatory responses by innate immune cells in allograft acceptance and survival. Here we investigated the role of mast cells (MC) in an acute male to female skin allograft rejection model using red MC and basophil (RMB) mice enabling conditional MC depletion. Kinetic analysis showed that MCs markedly accelerate skin rejection. They induced an early inflammatory response through degranulation and boosted local synthesis of KC, MIP-2, and TNF. This enhanced early neutrophil infiltration compared to a female-female graft-associated repair response. The uncontrolled neutrophil influx accelerated rejection as antibody-mediated depletion of neutrophils delayed skin rejection. Administration of cromolyn, a MC stabilizer and to a lesser extent ketotifen, a histamine type I receptor antagonist, and absence of MCPT4 chymase also delayed graft rejection. Together our data indicate that mediators contained in secretory granules of MC promote an inflammatory response with enhanced neutrophil infiltration that accelerate graft rejection.


Subject(s)
Cell Degranulation/immunology , Cytokines/immunology , Graft Rejection/immunology , Mast Cells/immunology , Neutrophil Infiltration , Neutrophils/immunology , Skin Transplantation , Animals , Cytokines/genetics , Graft Rejection/genetics , Graft Rejection/pathology , Mast Cells/pathology , Mice , Mice, Knockout
11.
Sci Signal ; 11(537)2018 07 03.
Article in English | MEDLINE | ID: mdl-29970602

ABSTRACT

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins mediate membrane fusion critical for vesicular transport and cellular secretion. Mast cells rely on SNARE-mediated membrane fusion for degranulation stimulated by crosslinking of immunoglobulin E (IgE) bound to the Fcε receptor (FcεRI). We investigated the mechanisms downstream of receptor activation that control degranulation. We found that the SNARE binding protein tomosyn-1 (also known as STXBP5) inhibited FcεRI-stimulated degranulation of mast cells. After mast cell activation, tomosyn-1 was phosphorylated on serine and threonine residues, dissociated from the SNARE protein syntaxin 4 (STX4), and associated with STX3. We identified PKCδ as the major kinase required for tomosyn-1 threonine phosphorylation and for regulation of the interaction with STXs. Incubation with high IgE concentrations increased tomosyn-1 abundance in cultured mast cells. Similarly, in basophils from allergic patients with high amounts of serum IgE, the abundance of tomosyn-1 was increased as compared to that in patients with normal IgE concentrations. Our findings identified tomosyn-1 as an inhibitor of mast cell degranulation that required PKCδ to switch its interaction with STX partners during fusion. We suggest that the IgE-mediated increase in tomosyn-1 abundance in allergic patients may represent a counterregulatory mechanism to limit disease development.


Subject(s)
Cell Degranulation , Exocytosis , Mast Cells/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C-delta/metabolism , R-SNARE Proteins/metabolism , Animals , Cells, Cultured , Humans , Immunoglobulin E/metabolism , Mast Cells/cytology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Phosphorylation , Protein Kinase C-delta/genetics , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/genetics , Rats , Receptors, IgE/metabolism , Retrospective Studies
12.
Nat Commun ; 9(1): 725, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463843

ABSTRACT

In systemic lupus erythematosus (SLE), autoantibody production can lead to kidney damage and failure, known as lupus nephritis. Basophils amplify the synthesis of autoantibodies by accumulating in secondary lymphoid organs. Here, we show a role for prostaglandin D2 (PGD2) in the pathophysiology of SLE. Patients with SLE have increased expression of PGD2 receptors (PTGDR) on blood basophils and increased concentration of PGD2 metabolites in plasma. Through an autocrine mechanism dependent on both PTGDRs, PGD2 induces the externalization of CXCR4 on basophils, both in humans and mice, driving accumulation in secondary lymphoid organs. Although PGD2 can accelerate basophil-dependent disease, antagonizing PTGDRs in mice reduces lupus-like disease in spontaneous and induced mouse models. Our study identifies the PGD2/PTGDR axis as a ready-to-use therapeutic modality in SLE.


Subject(s)
Basophils/immunology , Lupus Erythematosus, Systemic/immunology , Lymphatic System/immunology , Prostaglandin D2/immunology , Adult , Animals , Female , Humans , Lupus Erythematosus, Systemic/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Prostaglandin D2/blood , Receptors, CXCR4/blood , Receptors, CXCR4/immunology , Receptors, Immunologic/blood , Receptors, Immunologic/immunology , Receptors, Prostaglandin/blood , Receptors, Prostaglandin/immunology , Signal Transduction/immunology , Young Adult
13.
PLoS One ; 12(3): e0173815, 2017.
Article in English | MEDLINE | ID: mdl-28282470

ABSTRACT

Mast cells are critical actors of hypersensitivity type I (allergic) reactions by the release of vasoactive and proinflammatory mediators following their activation by aggregation of the high-affinity receptor for immunoglobulin E (FcεRI). We have previously identified Phospholipid Scramblase 1 (PLSCR1) as a new molecular intermediate of FcεRI signaling that amplifies degranulation of the rat mast cell line RBL-2H3. Here we characterized primary mast cells from Plscr1-/- mice. The absence of PLSCR1 expression did not impact mast cell differentiation as evidenced by unaltered FcεRI expression, general morphology, amount of histamine stored and expression of FcεRI signal effector molecules. No detectable mast cell deficiency was observed in Plscr1-/- adult mice. In dose-response and time-course experiments, primary cultures of mast cells (bone marrow-derived mast cells and peritoneal cell-derived mast cells) generated from Plscr1-/- mice exhibited a reduced release of ß-hexosaminidase upon FcεRI engagement as compared to their wild-type counterparts. In vivo, Plscr1-/- mice were protected in a model of passive systemic anaphylaxis when compared to wild-type mice, which was consistent with an observed decrease in the amounts of histamine released in the serum of Plscr1-/- mice during the reaction. Therefore, PLSCR1 aggravates anaphylactic reactions by increasing FcεRI-dependent mast cell degranulation. PLSCR1 could be a new therapeutic target in allergy.


Subject(s)
Anaphylaxis/metabolism , Mast Cells/physiology , Phospholipid Transfer Proteins/metabolism , Anaphylaxis/pathology , Animals , Cell Degranulation , Cell Differentiation , Cells, Cultured , Histamine/metabolism , Immunoglobulin E/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phospholipid Transfer Proteins/genetics , Receptors, IgE/metabolism
14.
Sci Rep ; 7(1): 7969, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801578

ABSTRACT

Lupus nephritis (LN), one of the most severe outcomes of systemic lupus erythematosus (SLE), is initiated by glomerular deposition of immune-complexes leading to an inflammatory response and kidney failure. Autoantibodies to nuclear antigens and autoreactive B and T cells are central in SLE pathogenesis. Immune mechanisms amplifying this autoantibody production drive flares of the disease. We previously showed that basophils were contributing to LN development in a spontaneous lupus-like mouse model (constitutive Lyn -/- mice) and in SLE subjects through their activation and migration to secondary lymphoid organs (SLOs) where they amplify autoantibody production. In order to study the basophil-specific mechanisms by which these cells contribute to LN development, we needed to validate their involvement in a genetically independent SLE-like mouse model. Pristane, when injected to non-lupus-prone mouse strains, induces a LN-like disease. In this inducible model, basophils were activated and accumulated in SLOs to promote autoantibody production. Basophil depletion by two distinct approaches dampened LN-like disease, demonstrating their contribution to the pristane-induced LN model. These results enable further studies to decipher molecular mechanisms by which basophils contribute to lupus progression.


Subject(s)
Basophils/immunology , Lupus Nephritis/immunology , Animals , Autoantibodies/immunology , Female , Immunosuppressive Agents/toxicity , Lupus Nephritis/etiology , Mice , Mice, Inbred C57BL , Terpenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL