Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Naturwissenschaften ; 109(3): 28, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35575831

ABSTRACT

Nectar plays important roles in the relationship between plants and other organisms, both within pollination systems and as a defense mechanism. In the latter case, extranuptial nectaries (ENNs) usually attract patrolling arthropods that reduce herbivory. ENNs have been frequently reported within the "xeric clade" of Bromeliaceae, but their occurrence in other groups of bromeliads is largely unexplored, especially considering their position, secretory activity and structure. After observing the presence of ants constantly patrolling the inflorescences of Pitcairnia burchellii Mez, we searched for the presence, secretory activity, and structure of ENNs in this species. We also provide a brief review of the occurrence ENNs in Bromeliaceae. The distribution of nectaries was assessed using ant-exclusion experiments, while structural analysis was performed using standard methods for light and scanning electron microscopy. The presence of sugars in the secretion was assessed by thin-layer chromatography and glucose strip tests. Nectaries in P. burchelli are non-structured glands on the adaxial surface of floral bracts and sepals. Bracts and sepals are distinct spatial units that act over time in the same strategy of floral bud protection. Literature data reveals that ENNs might be more common within Bromeliaceae than previously considered, comprising a homoplastic feature in the family. Future perspectives and evolutionary and taxonomic implications are discussed.


Subject(s)
Ants , Bromeliaceae/physiology , Plant Nectar , Animals , Arthropods/physiology , Bromeliaceae/ultrastructure , Chromatography, Thin Layer , Defense Mechanisms , Herbivory , Microscopy, Electron, Scanning , Plant Nectar/chemistry , Pollination/physiology
2.
Am J Bot ; 102(9): 1413-21, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26373978

ABSTRACT

PREMISE OF THE STUDY: Several angiosperm families have myxodiaspory, such as the Asteraceae in which cypselae are frequently wind-dispersed. The roles of mucilage in cypselae remain misunderstood, and the route of water uptake from substrate to embryo remains unknown. In this work, we analyze the fruits of Emilia fosbergii aiming to clarify how the water is absorbed and how the structure of the pericarp can be related to the processes of diaspore adhesion and seed imbibition. METHODS: The anatomy and ultrastructure of the cypselae of Emilia fosbergii were analyzed with histochemical tests and light, scanning and transmission electron microscopy. We assessed the roles of mucilage in seed imbibition using apoplasmic tracing with Lucifer yellow and epifluorescence microscopy and in adhesion with a sand assay. KEY RESULTS: We describe structural and ultrastructural aspects of the exocarpic cells, especially the mucilaginous twin hairs. Lucifer yellow was absorbed only by the twin hairs, the cells where water primarily enters the seed during seed imbibition. In the sand assay, the mucilage was adhesive. CONCLUSIONS: The twin hairs on the surface of the cypselae can play a dual role in the establishment of new plants of this species. First, these trichomes constitute the main passage for water intake, which is essential for seed imbibition and germination, and after imbibition, they release mucilage that can adhere the diaspore. Therefore, the presence of myxocarpy in Asteraceae could be important in anemochoric species to avoid secondary dispersal.


Subject(s)
Asteraceae/physiology , Plant Dispersal , Polysaccharides/metabolism , Water/metabolism , Germination , Seeds/physiology
3.
AoB Plants ; 15(5): plad066, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37899979

ABSTRACT

Bromeliaceae display many water-use strategies, from leaf impounding tanks to Crassulacean acid metabolism (CAM) photosynthesis and absorbing trichomes. Recent studies show that trichomes in inflorescences of bromeliads can exude viscous secretions, protecting against various stresses, including excessive water loss. In light of this, and considering the knowledge gap regarding inflorescence trichomes in bromeliads, we aimed to investigate the presence, source and chemical nature of inflorescence secretions in species of the Tillandsioideae (Bromeliaceae) and to describe the anatomy of their floral bracts focusing on trichome structure and position. We conducted a prospection of secretory activity and anatomy in floral bracts in 52 species of Tillandsioideae and 1 early divergent Bromeliaceae species. We used histochemical tests to investigate the presence and nature of secretion combined with standard light microscopy methods. Secretion appears in all studied species of tribe Vrieseeae, in Guzmania species, Wallisia cyanea, Tillandsia streptopylla (Tillandsieae) and Catopsis morreniana (Catopsideae). It is absent in Vriesea guttata (Vrieseeae), Racinaea crispa and various Tillandsia species (Tillandsieae). Secretion is produced by peltate trichomes on the adaxial surface of young bracts and comprises hydrophilic and lipophilic substances. Bract anatomy revealed an internal mucilage-secreting tissue with wide distribution within the subtribe Vrieseinae. Our results point to a broad occurrence of secretion associated with bracteal scales in inflorescences of Tillandsioideae. Secretory function is strongly related to trichomes of the adaxial surface, whereas the indumentum of the abaxial side is lacking or likely associated with water absorption; the latter case is especially related to small, xeric plants. Exudates might engage in colleter-like roles, protecting against desiccation, high-radiation and herbivores. Directions for future research are presented.

4.
Am J Bot ; 99(12): 1910-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23174914

ABSTRACT

PREMISE OF THE STUDY: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • METHODS: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • KEY RESULTS: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • CONCLUSIONS: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.


Subject(s)
Meliaceae/anatomy & histology , Meliaceae/physiology , Plant Nectar/analysis , Plant Nectar/metabolism , Brazil , Chromatography, Thin Layer , Flowers/anatomy & histology , Flowers/growth & development , Flowers/physiology , Flowers/ultrastructure , Meliaceae/growth & development , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pollen/anatomy & histology
5.
Plants (Basel) ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34451725

ABSTRACT

Buds usually possess mechanical or chemical protection and may also have secretory structures. We discovered an intricate secretory system in Ouratea castaneifolia (Ochnaceae) related to the protection of buds and young leaves. We studied this system, focusing on the distribution, morphology, histochemistry, and ultrastructure of glands during sprouting. Samples of buds and leaves were processed following the usual procedures for light and electron microscopy. Overlapping bud scales protect dormant buds, and each young leaf is covered with a pair of stipules. Stipules and scales possess a resin gland, while the former also possess an extrafloral nectary. Despite their distinct secretions, these glands are similar and comprise secreting palisade epidermis. Young leaves also possess marginal colleters. All the studied glands shared some structural traits, including palisade secretory epidermis and the absence of stomata. Secretory activity is carried out by epidermal cells. Functionally, the activity of these glands is synchronous with the young and vulnerable stage of vegetative organs. This is the first report of colleters and resin glands for O. castaneifolia. We found evidence that these glands are correlated with protection against herbivores and/or abiotic agents during a developmental stage that precedes the establishment of mechanical defenses.

6.
Plants (Basel) ; 9(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570791

ABSTRACT

Bromeliad scales have been investigated extensively due to their recognition as a key ecological and evolutionary feature of Bromeliaceae. However, much remains unknown about such trichomes and only recently mucilage exudation was described for them in a species of the subfamily Bromelioideae. The present study aimed to investigate the secretion present in inflorescences of Tillandsia cyanea Linden ex K. Koch (Tillandsioideae) to determine whether the scales of this species also produce and release secretions. Samples of young and mature portions of inflorescences were collected and prepared according to standard methods for light and electron microscopy. Anatomical and ultrastructural results indicate that the secretion is produced by the wing portion of typical peltate trichomes on the adaxial surface of bracts. The secretory activity begins in the early stages of trichome expansion and characteristically occurs in cells exhibiting a porous cuticle and dense cytoplasm with numerous mitochondria and dictyosomes. Histochemical tests confirmed mucilage secretion and revealed proteins in the exudate. These data comprise the first record of mucilage exudation by trichomes within Tillandsioideae and indicate that this capacity may be more relevant to bromeliad biology than previously considered. Functional aspects and colleter-like activity are also discussed.

7.
Plant Physiol Biochem ; 144: 283-291, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31593901

ABSTRACT

Flowers require high amounts of water, which ultimately may compromise pollinator attractiveness under water limitation. Water-use and -conservation strategies in leaves from hot and dry ecosystems are well documented, yet little is known about mechanisms of water allocation in flowers, particularly in tropical savanna ecosystems. We evaluated traits related to corolla water status in two Kielmeyera species that differ in flowering phenology and flower size: larger-flowered K. regalis blooms during the rainy summer and smaller-flowered K. coriacea blooms during the dry winter. To test the hypothesis that water demand in corollas increases with increasing vapor pressure deficit (VPD), we analyzed interspecific differences in corolla stomatal conductance and density, water content, and fresh and dry mass per unit area. We also performed hand-pollination and pollinator-exclusion experiments to determine variation in floral longevity. Corolla transpiration rates were higher in K. coriacea (157 vs 95 g·H2O·m-2·h-1 for K. coriacea and K. regalis, respectively), and increased with VPD in both species. Stomatal density was 25-fold higher in K. coriacea, and corolla fresh and dry mass per unit of area were 47% and 21% higher, respectively, in K. coriacea, due to thick pectin-rich cell walls. The high pectin content increases water content in corollas of K. coriacea. Regardless of pollination, flowers lasted one day in K. coriacea and three in K. regalis. Our study suggests structure-function relationships of floral traits with flowering season, and that K. coriacea displays small and short-lived corollas with high water content to buffer the high evaporative demand during the dry period.


Subject(s)
Flowers/metabolism , Plant Leaves/metabolism , Ecosystem , Flowers/genetics , Grassland , Pectins/metabolism , Plant Leaves/genetics , Plant Transpiration , Water/metabolism
8.
Front Plant Sci ; 8: 516, 2017.
Article in English | MEDLINE | ID: mdl-28469622

ABSTRACT

High arsenic (As) concentrations are toxic to all the living organisms and the cellular response to this metalloid requires the involvement of cell signaling agents, such as nitric oxide (NO). The As toxicity and NO signaling were analyzed in Pistia stratiotes leaves. Plants were exposed to four treatments, for 24 h: control; SNP [sodium nitroprusside (NO donor); 0.1 mg L-1]; As (1.5 mg L-1) and As + SNP (1.5 and 0.1 mg L-1, respectively). The absorption of As increased the concentration of reactive oxygen species and triggered changes in the primary metabolism of the plants. While photosynthesis and photorespiration showed sharp decrease, the respiration process increased, probably due to chemical similarity between arsenate and phosphate, which compromised the energy status of the cell. These harmful effects were reflected in the cellular structure of P. stratiotes, leading to the disruption of the cells and a possible programmed cell death. The damages were attenuated by NO, which was able to integrate central plant physiological processes, with increases in non-photochemical quenching and respiration rates, while the photorespiration level decreased. The increase in respiratory rates was essential to achieve cellular homeostasis by the generation of carbon skeletons and metabolic energy to support processes involved in responses to stress, as well to maintaining the structure of organelles and prevent cell death. Overall, our results provide an integrated view of plant metabolism in response to As, focusing on the central role of NO as a signaling agent able to change the whole plant physiology.

10.
An Acad Bras Cienc ; 80(3): 455-65, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18797798

ABSTRACT

Discrepant and incomplete interpretations of fruits of Pterodon have been published, especially on the structural interpretation of the pericarp portion that remain attached to the seed upon dispersal. The present work clarified these doubts and analyzed ultrastructural aspects of the Pterodon emarginatus diaspores using light and transmission electron microscopes. Cell divisions are prevalent among the initial phases of development, and the subadaxial and adaxial meristems form the fibrous inner mesocarp and the endocarp composed of multi-seriate epidermis, respectively. At the median mesocarp, numerous secretory ducts differentiate between the lateral bundles, by lytic process. After lysis of the central cells and the formation of the lumen, the ducts show unistratified secretory epithelium with dense cells; oil droplets are observed on the secretory epithelium and the subadjacent tissues. At maturity, the uniseriate exocarp and the outer mesocarp slough off in an irregular fashion, leaving the diaspore composed of a papery and brittle wing linked to a seed chamber that includes the median mesocarp composed of lignified cells, bordering vascular bundles and many secretory ducts whose epithelial cells develop large vacuoles that accumulate oleoresins. The Pterodon emarginatus fruit is a cryptosamara.


Subject(s)
Fabaceae/ultrastructure , Fabaceae/anatomy & histology , Flowers/anatomy & histology , Flowers/ultrastructure , Fruit/anatomy & histology , Fruit/ultrastructure , Microscopy, Electron, Scanning
11.
An. acad. bras. ciênc ; 80(3): 455-465, Sept. 2008. ilus
Article in English | LILACS | ID: lil-491826

ABSTRACT

Discrepant and incomplete interpretations of fruits of Pterodon have been published, especially on the structural interpretation of the pericarp portion that remain attached to the seed upon dispersal. The present work clarified these doubts and analyzed ultrastructural aspects of the Pterodon emarginatus diaspores using light and transmission electron microscopes. Cell divisions are prevalent among the initial phases of development, and the subadaxial and adaxial meristems form the fibrous inner mesocarp and the endocarp composed of multi-seriate epidermis, respectively. At the median mesocarp, numerous secretory ducts differentiate between the lateral bundles, by lytic process. After lysis of the central cells and the formation of the lumen, the ducts show unistratified secretory epithelium with dense cells; oil droplets are observed on the secretory epithelium and the subadjacent tissues. At maturity, the uniseriate exocarp and the outer mesocarp slough off in an irregular fashion, leaving the diaspore composed of a papery and brittle wing linked to a seed chamber that includes the median mesocarp composed of lignified cells, bordering vascular bundles and many secretory ducts whose epithelial cells develop large vacuoles that accumulate oleoresins. The Pterodon emarginatus fruit is a cryptosamara.


Interpretações discrepantes e incompletas têm sido conferidas ao fruto de Pterodon, especialmente no que tange à determinação estrutural da porção pericárpica que acompanha a semente na dispersão. Assim, com o objetivo de dirimir tais dúvidas e analisar a organização ultra-estrutural das estruturas secretoras presentes no diásporo de Pterodon emarginatus, realizaram-se estudos convencionais aos microscópios de luz e eletrônico de transmissão. Nas fases iniciais de desenvolvimento do fruto, prevalecem divisões celulares; pela ação do meristema subadaxial e do adaxial, formam-se, respectivamente, o mesocarpo interno fibroso e o endocarpo composto por epiderme multisseriada. No mesocarpo mediano, entre os feixes vasculares laterais, diferenciam-se numerosos ductos secretores lisígenos. Após a lise das células centrais e formação do lume, os ductos apresentam epitélio secretor uniestratificado, com células densas; gotas de óleo são observadas no epitélio secretor e tecido subjacente. Na maturidade, o exocarpo unisseriado e o mesocarpo externo, ambos fenólicos, descamam irregularmente, sendo o diásporo constituído pela ala papirácea e quebradiça, ligada ao núcleo seminífero que abrange o mesocarpo mediano de células lignificadas, margeando feixes vasculares e muitos ductos secretores, que apresentam acúmulo de oleorresina e cujas células epiteliais tornam-se vacuoladas. O fruto de Pterodon emarginatus é, portanto, uma criptossâmara.


Subject(s)
Fabaceae/ultrastructure , Fabaceae/anatomy & histology , Flowers/anatomy & histology , Flowers/ultrastructure , Fruit/anatomy & histology , Fruit/ultrastructure , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL