Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-36945443

ABSTRACT

Toxic cardiotonic steroids (CTS) act as a defense mechanism in many firefly species (Lampyridae) by inhibiting a crucial enzyme called Na+,K+-ATPase (NKA). While most fireflies produce these toxins internally, species of the genus Photuris acquire them from a surprising source: predation on other fireflies. The contrasting physiology of toxin exposure and sequestration between Photuris and other firefly genera suggests that distinct strategies may be required to prevent self-intoxication. Our study demonstrates that both Photuris and their firefly prey have evolved highly-resistant NKAs. Using an evolutionary analysis of the specific target of CTS (ATPα) in fireflies, and gene-editing in Drosophila, we find that the initial steps towards resistance were shared among Photuris and other firefly lineages. However, the Photuris lineage subsequently underwent multiple rounds of gene duplication and neofunctionalization, resulting in the development of ATPα paralogs that are differentially expressed and exhibit increasing resistance to CTS. In contrast, other firefly species have maintained a single copy. Our results implicate gene duplication as a facilitator in the transition of Photuris to its distinct ecological role as predator of toxic firefly prey.

SELECTION OF CITATIONS
SEARCH DETAIL