Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Angew Chem Int Ed Engl ; 63(26): e202406177, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38651494

ABSTRACT

The development of electronic skin with dual stealth functionality is crucial for enabling devices to operate effectively in dynamic electromagnetic environments, thereby facilitating intelligent electromagnetic protection for autonomous perception. However, achieving compatibility between terahertz (THz) and infrared (IR) stealth technologies remains largely unexplored due to their inherent contradictions. Herein, inspired by natural corals, a novel coral-like multi-scale composite foam (CMSF) was proposed that ingeniously reconciles these contradictions. The design capitalizes on the conductive network and heat insulation properties of the foam skeleton, the loss effects and low infrared emission of metal particles, and the infrared transparency of magneto-optical materials. This approach leads to the realization of a THz-IR bi-stealth electronic skin concept. The CMSF exhibits a maximum reflection loss of 84.8 dB in the terahertz band, while its infrared stealth capability ensures environmental adaptability under varying temperatures. Furthermore, the electronic skin exhibits exceptional sensitivity and reliability as a wearable device for perceiving environmental changes. This advanced material, combining multispectral stealth with sensing capabilities, holds immense potential for applications ranging from camouflage technology to smart wearables.


Subject(s)
Anthozoa , Infrared Rays , Wearable Electronic Devices , Anthozoa/chemistry , Animals , Terahertz Radiation
2.
J Biomed Sci ; 30(1): 38, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37287024

ABSTRACT

BACKGROUND: The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. METHODS: A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. RESULTS: Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC's regeneration. CONCLUSIONS: This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress-gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.


Subject(s)
Inflammatory Bowel Diseases , MicroRNAs , Humans , Animals , Mice , Swine , Membrane Proteins/metabolism , Verrucomicrobia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals
3.
Macromol Rapid Commun ; 43(9): e2100826, 2022 May.
Article in English | MEDLINE | ID: mdl-35257427

ABSTRACT

Metacomposites have attracted widespread attention due to their unique negative electromagnetic properties and stupendous applications. Although there are systems that realize metamaterial properties in low radio frequency bands, the research on the construction of polymer matrix metacomposites with negative performance in the pivotal GHz band is still undiscovered. Herein, carbon nanofiber/conductive polymer metacomposites with 3D overlapping network structures are innovatively constructed to achieve negative permittivity characteristics in the radarwave frequency range, and convenient methods for further adjusting the electromagnetic parameters is also proposed. The results show that the negative permittivity of CNFs/PANI metacomposites can be conveniently altered via adjusting PANI content. Furthermore, electromagnetic shielding has also been fully discussed as one of the most valuable applications of the metacomposites. The SET of CNFs/PANI-70 has an average value of 70 dB at 4-18 GHz and can reach a maximum of 80 dB at 4 GHz, which far exceeds the current commercial electromagnetic shielding standards. This work greatly broadens the promising application of metacomposites for perfect electromagnetic shielding, novel capacitance, and frequency selective surfaces.

4.
Genes (Basel) ; 14(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37510271

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, with septic cardiomyopathy being a common and severe complication. Despite its significant clinical impact, the molecular mechanisms underlying sepsis-induced cardiomyopathy (SICM) remain incompletely understood. In this study, we performed a comparative analysis of whole transcriptome profiles using RNA sequencing in mouse hearts in two widely used mouse models of septic cardiomyopathy. CLP-induced sepsis was achieved by surgical cecal ligation and puncture, while LPS-induced sepsis was induced using a 5 mg/kg intraperitoneal (IP) injection of lipopolysaccharide (LPS). For consistency, we utilized sham-operated mice as the control for septic models. Our aim was to identify key genes and pathways involved in the development of septic cardiomyopathy and to evaluate the similarities and differences between the two models. Our findings demonstrated that both the CLP and lipopolysaccharide LPS methods could induce septic heart dysfunction within 24 h. We identified common transcriptional regulatory regions in the septic hearts of both models, such as Nfkb1, Sp1, and Jun. Moreover, differentially expressed genes (DEGs) in comparison to control were involved in shared pathways, including regulation of inflammatory response, regulation of reactive oxygen species metabolic process, and the JAK-STAT signaling pathway. However, each model presented distinctive whole transcriptome expression profiles and potentially diverse pathways contributing to sepsis-induced heart failure. This extensive comparison enhances our understanding of the molecular basis of septic cardiomyopathy, providing invaluable insights. Accordingly, our study also contributes to the pursuit of effective and personalized treatment strategies for SICM, highlighting the importance of considering the specific causative factors.


Subject(s)
Cardiomyopathies , Sepsis , Mice , Animals , Lipopolysaccharides/toxicity , Transcriptome , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/genetics , Sepsis/drug therapy , Heart
5.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993497

ABSTRACT

RATIONALE: Cardiac microvascular leakage and inflammation are triggered during myocardial infarction (MI) and contribute to heart failure. Hypoxia-inducible factor 2α (Hif2α) is highly expressed in endothelial cells (ECs) and rapidly activated by myocardial ischemia, but whether it has a role in endothelial barrier function during MI is unclear. OBJECTIVE: To test our hypothesis that the expression of Hif2α and its binding partner aryl hydrocarbon nuclear translocator (ARNT) in ECs regulate cardiac microvascular permeability in infarcted hearts. METHODS AND RESULTS: Experiments were conducted with mice carrying an inducible EC-specific Hif2α-knockout (ecHif2α-/-) mutation, with mouse cardiac microvascular endothelial cells (CMVECs) isolated from the hearts of ecHif2α-/- mice after the mutation was induced, and with human CMVECs and umbilical-vein endothelial cells transfected with ecHif2α siRNA. After MI induction, echocardiographic assessments of cardiac function were significantly lower, while measures of cardiac microvascular leakage (Evans blue assay), plasma IL6 levels, and cardiac neutrophil accumulation and fibrosis (histology) were significantly greater, in ecHif2α-/- mice than in control mice, and RNA-sequencing analysis of heart tissues from both groups indicated that the expression of genes involved in vascular permeability and collagen synthesis was enriched in ecHif2α-/- hearts. In cultured ECs, ecHif2α deficiency was associated with declines in endothelial barrier function (electrical cell impedance assay) and the reduced abundance of tight-junction proteins, as well as an increase in the expression of inflammatory markers, all of which were largely reversed by the overexpression of ARNT. We also found that ARNT, but not Hif2α, binds directly to the IL6 promoter and suppresses IL6 expression. CONCLUSIONS: EC-specific deficiencies in Hif2α expression significantly increase cardiac microvascular permeability, promote inflammation, and reduce cardiac function in infarcted mouse hearts, and ARNT overexpression can reverse the upregulation of inflammatory genes and restore endothelial-barrier function in Hif2α-deficient ECs.

6.
Mol Nutr Food Res ; 65(1): e2000771, 2021 01.
Article in English | MEDLINE | ID: mdl-32997872

ABSTRACT

The endoplasmic reticulum (ER)-resident basic leucine zipper (bZIP) transcription factor c-AMP responsive element binding protein H (CREBH/CREB3L3) is exclusively expressed in the liver and intestine. Physiologically, CREBH is intrinsically linked to nutritional homeostasis via its regulation on fatty acid ß-oxidation, lipid droplet process, very low-density lipoprotein metabolism, gluconeogenesis, and iron metabolism. Pathologically, CREBH enhances hepatic acute-phase response gene expression (e.g., C-reactive protein and serum amyloid P-component) and mediates nutrient-surplus induced metabolic inflammation. Hyperactivation of CREBH in metabolic inflammation further contributes to the development of hyperlipidemia, lipotoxicity, non-alcoholic fatty liver disease, and potentially non-alcoholic steatohepatitis. This review highlights recent findings that delineate the interactions between CREBH and peroxisome proliferator activated receptor α (PPARα), fibroblast growth factor 21 (FGF21), fat-specific protein 27 (FSP27), and lipoprotein metabolism with a focus on the molecular and biochemical mechanisms that underlie the development of metabolic inflammation, non-alcoholic fatty liver disease and inflammatory associated bone disease.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Inflammation/metabolism , Metabolic Diseases/metabolism , Acute-Phase Reaction/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/genetics , Cytokines/metabolism , Energy Metabolism , Fasting , Gluconeogenesis , Humans , Lipid Metabolism , Lipoproteins, LDL/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism
7.
Cells ; 10(11)2021 11 11.
Article in English | MEDLINE | ID: mdl-34831347

ABSTRACT

Cardiovascular disease (CVD) is one of the contributing factors to more than one-third of human mortality and the leading cause of death worldwide. The death of cardiac myocyte is a fundamental pathological process in cardiac pathologies caused by various heart diseases, including myocardial infarction. Thus, strategies for replacing fibrotic tissue in the infarcted region with functional myocardium have long been a goal of cardiovascular research. This review begins by briefly discussing a variety of somatic stem- and progenitor-cell populations that were frequently studied in early investigations of regenerative myocardial therapy and then focuses primarily on pluripotent stem cells (PSCs), especially induced-pluripotent stem cells (iPSCs), which have emerged as perhaps the most promising source of cardiomyocytes for both therapeutic applications and drug testing. We also describe attempts to generate cardiomyocytes directly from cardiac fibroblasts (i.e., transdifferentiation), which, if successful, may enable the pool of endogenous cardiac fibroblasts to be used as an in-situ source of cardiomyocytes for myocardial repair.


Subject(s)
Heart Failure/therapy , Myocardium/pathology , Regeneration/physiology , Stem Cell Transplantation , Animals , Clinical Trials as Topic , Humans , Induced Pluripotent Stem Cells/cytology
8.
J Nutr Biochem ; 43: 125-131, 2017 05.
Article in English | MEDLINE | ID: mdl-28284064

ABSTRACT

Fructose is a highly lipogenic sugar that can alter energy metabolism and trigger metabolic disorders. In the current study, microRNAs (miRNAs) altered by a high-fructose diet were comprehensively explored to elucidate their significance in the pathogenesis of chronic metabolic disorders. miRNA expression profiling using small noncoding RNA sequencing revealed that 19 miRNAs were significantly upregulated and 26 were downregulated in the livers of high-fructose-fed mice compared to chow-fed mice. Computational prediction and functional analysis identified 10 miRNAs, miR-19b-3p, miR-101a-3p, miR-30a-5p, miR-223-3p, miR-378a-3p, miR-33-5p, miR-145a-3p, miR-128-3p, miR-125b-5p and miR-582-3p, assembled as a regulatory network to potentially target key genes in lipid and lipoprotein metabolism and insulin signaling at multiple levels. qRT-PCR analysis of their potential target genes [IRS-1, FOXO1, SREBP-1c/2, ChREBP, insulin-induced gene-2 (Insig-2), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (apoB)] demonstrated that fructose-induced alterations of miRNAs were also reflected in mRNA expression profiles of their target genes. Moreover, the miRNA profile induced by high-fructose diet differed from that induced by high-fat diet, indicating that miRNAs mediate distinct pathogenic mechanisms in dietary-induced metabolic disorders. This study presents a comprehensive analysis of a new set of hepatic miRNAs, which were altered by high-fructose diet and provides novel insights into the interaction between miRNAs and their target genes in the development of metabolic syndrome.


Subject(s)
Fructose/adverse effects , Hyperlipidemias/genetics , Insulin Resistance/genetics , Liver/physiology , MicroRNAs/genetics , Animals , Cell Line , Diet, High-Fat/adverse effects , Gene Expression Regulation , Hyperlipidemias/etiology , Lipid Metabolism/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Rats
9.
Oncotarget ; 8(50): 87718-87736, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29152115

ABSTRACT

In normal colon, claudin-2 expression is restricted to the crypt bottom containing the undifferentiated and proliferative colonocytes. Claudin-2 expression is also upregulated in colorectal cancer (CRC) and promotes carcinogenesis. However, cellular mechanism/s regulated by increased claudin-2 expression during the CRC and mechanism/s regulating this increase remain poorly understood. Epigenetic mechanisms help regulate expression of cancer-associated genes and inhibition of Histone Deacetylases (HDACs) induces cell cycle arrest and differentiation. Accordingly, based on a comprehensive in vitro and in vivo analysis we here report that Histone Deacetylases regulate claudin-2 expression in causal association with colonocyte dedifferentiation to promote CRC. Detailed differentiation analyses using colon cancer cells demonstrated inverse association between claudin-2 expression and epithelial differentiation. Genetic manipulation studies revealed the causal role of HDAC-4 in regulating claudin-2 expression during this process. Further analysis identified transcriptional regulation as the underlying mechanism, which was dependent on HDAC-4 dependent modulation of the EGFR-ERK1/2 signaling. Accordingly, colon tumors demonstrated marked upregulation of the HDAC-4/ERK1/2/Claudin-2 signaling. Taken together, we demonstrate a novel role for HDAC-4/EGFR/ERK1/2 signaling in regulating claudin-2 expression to modulate colonocyte differentiation. These findings are of clinical significance and highlight epigenetic regulation as potential mechanism to regulate claudin-2 expression during mucosal pathologies including CRC.

10.
Curr Pharm Des ; 22(18): 2697-703, 2016.
Article in English | MEDLINE | ID: mdl-26831644

ABSTRACT

BACKGROUND: The double stranded RNA (dsRNA)-activated protein kinase PKR is a well-established protein kinase that is activated by dsRNA during viral infection, and it inhibits global protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor 2α (eIF2α). Recent studies have greatly broadened the recognized physiological activities of PKR by demonstrating its fundamental role in inflammatory signaling, particularly in chronic, low-grade inflammation induced by metabolic disorders, known as metaflammation. Metaflammation is initiated by the activation of the NOD-like receptor (NLR), leucine-rich repeat, pyrin domaincontaining 3 (NLRP3) gene by mitochondrial reactive oxygen species (ROS). A protein complex defined as the metaflammasome is assembled in the course of metaflammation. This complex integrates nutritional signaling with cellular stress, inflammatory components, and insulin action and is essential in maintaining metabolic homeostasis. PKR is a key constituent of the metaflammasome and interacts directly with several inflammatory kinases, such as inhibitor κB (IκB) kinase (IKK) and c-Jun N-terminal kinase (JNK), insulin receptor substrate 1 (IRS1), and component of the translational machinery such as eIF2α. CONCLUSION: This review highlights recent findings in PKR-mediated metaflammation and its association with the onset of metabolic syndrome in both human and animal models, with a focus on the molecular and biochemical pathways that underlie the progression of obesity, insulin resistance, and type-2 diabetes.


Subject(s)
Inflammation/metabolism , Metabolic Syndrome/metabolism , Mitochondria/metabolism , eIF-2 Kinase/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL