Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Dev Comp Immunol ; 90: 121-129, 2019 01.
Article in English | MEDLINE | ID: mdl-30227217

ABSTRACT

Peptidoglycan is the key component forming the backbone of bacterial cell wall. It can be recognized by a group of pattern recognition receptors, known as peptidoglycan recognition proteins (PGRPs) in insects and higher animals. PGRPs may serve as immune receptors or N-acetylmuramoyl-L-alanine amidases (EC 3.5.1.28). Here, we report the characterization of a short PGRP, PGRP-S1, from the oriental armyworm, Mythimna separata. MsePGRP-S1 cDNA encodes a protein of 197 amino acids (aa) with a PGRP domain of about 150 aa. MsePGRP-S1 was expressed in several tissues of naïve larvae, including hemocytes, midgut, fat body and epidermis. Bacterial challenges caused variable changes in different tissues at the mRNA level. The recombinant protein bound strongly to Staphylococcus aureus and purified peptidoglycans from Staphylococcus aureus and Bacillus subtilis. It can inhibit the growth of gram-negative and gram-positive bacteria by disrupting bacterial surface. It can degrade peptidoglycans from Escherichia coli and Staphylococcus aureus. Taken together, these data demonstrate that M. separata PGRP-S1 is involved in defending against bacteria.


Subject(s)
Bacillus subtilis/physiology , Carrier Proteins/genetics , Hemocytes/physiology , Insect Proteins/genetics , Receptors, Pattern Recognition/genetics , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/metabolism , Carrier Proteins/metabolism , Cloning, Molecular , Immunity, Innate , Insect Proteins/metabolism , Lepidoptera/immunology , Peptidoglycan/metabolism , Receptors, Pattern Recognition/metabolism , Recombinant Proteins/genetics
2.
Dev Comp Immunol ; 83: 80-88, 2018 06.
Article in English | MEDLINE | ID: mdl-29229443

ABSTRACT

Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, ß-1,3-glucan recognition proteins (ßGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize ß-1,3-glucans. Typical insect ßGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical ß-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect ßGRPs possess at least three types of functions. Firstly, some ßGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal ß-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect ßGRPs, functions of some well-characterized members, structure-function studies and their potential application.


Subject(s)
Carrier Proteins/metabolism , Insect Proteins/metabolism , Insecta/physiology , Receptors, Pattern Recognition/metabolism , Animals , Carrier Proteins/genetics , Humans , Immunity, Innate , Insect Proteins/genetics , Protein Domains/genetics , Receptors, Pattern Recognition/genetics , Signal Transduction , Toll-Like Receptors/metabolism
3.
Dev Comp Immunol ; 87: 137-146, 2018 10.
Article in English | MEDLINE | ID: mdl-29935286

ABSTRACT

Antimicrobial peptides (AMPs) are produced by the stimulated humoral immune system. Most mature AMPs contain less than 50 amino acid residues. Some of them are generated from proproteins upon microbial challenges. Here, we report the antimicrobial activities of a proline-rich proprotein, named SlLebocin1 (SlLeb1), from the tobacco cutworm Spodoptera litura. SlLebocin1 cDNA contains a 477-bp open reading frame (ORF). It is mainly expressed in hemocytes and the midgut in naïve larvae. The transcript level was significantly induced in hemocytes but repressed in the midgut and fat body by bacterial challenges. The proprotein contains 158 amino acids with 3 RXXR motifs that are characteristic of some Lepidopteral lebocin proproteins. Four peptides corresponding to the predicted processed fragments were synthesized chemically, and their antimicrobial activities against two Gram-negative and two Gram-positive bacterial strains were analyzed. The peptides showed differential antimicrobial activities. For Escherichia coli and Bacillus subtilis, only the C-terminal fragment (124-158) showed strong inhibitory effects. For Staphylococcus aureus, all peptides showed partial inhibitions. None of them inhibited Serratia marcescens. Bacterial morphologies were examined by the scanning electron microscopy and confocal laser scanning microscopy. The antimicrobial peptides either disrupted cellular membrane or inhibited cell division and caused elongated/enlarged morphologies. The results may provide ideas for designing novel antibiotics.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Insect Proteins/genetics , Proline-Rich Protein Domains/genetics , Protein Precursors/genetics , Spodoptera/genetics , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/classification , Antimicrobial Cationic Peptides/pharmacology , Base Sequence , Digestive System/metabolism , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Gene Expression Profiling , Hemocytes/metabolism , Insect Proteins/classification , Insect Proteins/pharmacology , Larva/genetics , Microscopy, Electron, Scanning , Phylogeny , Protein Precursors/classification , Protein Precursors/pharmacology , Sequence Homology, Amino Acid , Staphylococcus aureus/drug effects , Staphylococcus aureus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL