Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Drugs Context ; 102021.
Article in English | MEDLINE | ID: mdl-34795777

ABSTRACT

Cardiovascular disease (CVD) represents the leading cause of death worldwide. The role of low-density lipoprotein-cholesterol (LDL-C) in the pathophysiology of atherosclerosis and CVD has been well recognized. Statins are the standard of care for the management of hypercholesterolaemia, and their effectiveness in lowering LDL-C and reducing CVD risk in both primary and secondary prevention has been well established. However, several patients fail to attain optimal LDL-C goals or are intolerant to statins, especially at high doses. PCSK9 inhibitors, bempedoic acid, inclisiran, ANGPTL3 inhibitors, PPARß/δ agonists and LXR agonists are novel or upcoming LDL-C-lowering agents that have shown promising beneficial results. This review aims to present and discuss the current clinical and scientific data pertaining to the new and emerging lipid-modifying LDL-C-lowering drugs.

2.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34369384

ABSTRACT

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardium/cytology , Tissue Engineering/methods , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cardiac Surgical Procedures , Guided Tissue Regeneration/methods , Heart Failure/prevention & control , Heart Failure/therapy , Humans , Hydrogels/therapeutic use , Induced Pluripotent Stem Cells , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL