Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Neuropediatrics ; 54(2): 126-133, 2023 04.
Article in English | MEDLINE | ID: mdl-36442788

ABSTRACT

BACKGROUND: Biogenic amines and pterins analysis in cerebrospinal fluid (CSF) are reliable biomarkers for the diagnosis of inherited disorders of monoamine neurotransmitters. OBJECTIVE: The objectives of this study were the establishment of reference values of CSF biogenic amine metabolites in a cohort of Greek children, the detection of primary defects of biogenic amine metabolism, and the assessment of biogenic amine metabolites in children with different neurological disorders. METHODS: CSF biogenic amine metabolites and pterins (biopterin and neopterin) were analyzed using high-performance liquid chromatography with electrochemical and fluorescence detection. Three hundred sixty-three samples were analyzed: 60 infants and children with no history of neurological disorder, 6 with inherited disorders of monoamine neurotransmitters, and 297 with diverse neurological disorders. RESULTS: Reference values were stratified into six age groups. A strong correlation between homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5HIAA) levels with age was detected (p < 0.001). Two patients were diagnosed with a defect of the biogenic amine synthetic pathway and three with a defect of tetrahydrobiopterin cofactor production. HVA and 5HIAA abnormalities were detected within different groups of neurological disorders, but none followed a specific pattern of HVA and 5HIAA abnormalities. CONCLUSION: In the current study, Greek reference values of biogenic amines and pterins in CSF are presented. Five new patients with inherited monoamine neurotransmitter disorders are described. Nonspecific secondary biogenic amine disturbances can be seen in patients with different neurological disorders.


Subject(s)
Biogenic Amines , Nervous System Diseases , Infant , Child , Humans , Greece , Biogenic Amines/cerebrospinal fluid , Homovanillic Acid/cerebrospinal fluid , Pterins/cerebrospinal fluid , Nervous System Diseases/diagnosis , Neurotransmitter Agents , Hydroxyindoleacetic Acid/cerebrospinal fluid
2.
Environ Health ; 21(1): 46, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35501856

ABSTRACT

BACKGROUND: Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. METHODS: Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. RESULTS: Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. CONCLUSIONS: The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.


Subject(s)
Herbicides , Insecticides , Microbiota , Pesticide Residues , Pesticides , Adult , Dietary Exposure/analysis , Herbicides/analysis , Humans , Insecticides/analysis , Organophosphorus Compounds , Pesticide Residues/analysis , Vegetables/chemistry
3.
Diagnostics (Basel) ; 14(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611595

ABSTRACT

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy. Despite high cure rates, several questions remain regarding predisposition, response to treatment, and prognosis of the disease. The role of intermediary metabolism in the individualized mechanistic pathways of the disease is unclear. We have hypothesized that children with any (sub)type of ALL have a distinct metabolomic fingerprint at diagnosis when compared: (i) to a control group; (ii) to children with a different (sub)type of ALL; (iii) to the end of the induction treatment. MATERIALS AND METHODS: In this prospective case-control study (NCT03035344), plasma and urinary metabolites were analyzed in 34 children with ALL before the beginning (D0) and at the end of the induction treatment (D33). Their metabolic fingerprint was defined by targeted analysis of 106 metabolites and compared to that of an equal number of matched controls. Multivariate and univariate statistical analyses were performed using SIMCAP and scripts under the R programming language. RESULTS: Metabolomic analysis showed distinct changes in patients with ALL compared to controls on both D0 and D33. The metabolomic fingerprint within the patient group differed significantly between common B-ALL and pre-B ALL and between D0 and D33, reflecting the effect of treatment. We have further identified the major components of this metabolic dysregulation, indicating shifts in fatty acid synthesis, transfer and oxidation, in amino acid and glycerophospholipid metabolism, and in the glutaminolysis/TCA cycle. CONCLUSIONS: The disease type and time point-specific metabolic alterations observed in pediatric ALL are of particular interest as they may offer potential for the discovery of new prognostic biomarkers and therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL