Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Article in English | MEDLINE | ID: mdl-38924775

ABSTRACT

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

2.
Am J Respir Cell Mol Biol ; 64(2): 163-172, 2021 02.
Article in English | MEDLINE | ID: mdl-32946290

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease of indeterminate etiology and limited therapeutic options. The initiation, development, and progression of IPF are influenced by genetic predisposition, aging, and host and environmental factors, but the magnitude of the contribution of each of them and the sequence of the pathogenic events are uncertain. Current evidence indicates that accumulated environmental exposures in a genetically predisposed individual, usually over 60 years of age, leads to phenotypic and functional alterations of the lung epithelium. Aberrant activation of epithelial cells results, through a complex release of numerous mediators, in the local expansion of peculiar subsets of aggressive fibroblasts and myofibroblasts, which are crucial effector cells of fibrotic remodeling and loss of the normal lung architecture and function. Progressive increase of the mechanical stiffness activates cell-autonomous and matrix-dependent processes contributing to the perpetuation of the fibrotic response. This Perspective provides an integral overview of the major risk factors underpinning the pathogenesis of IPF, including gene variants, aging alterations, environmental factors, host risk factors, and epigenetic reprogramming.


Subject(s)
Aging/genetics , Aging/pathology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Disease Progression , Epigenesis, Genetic/genetics , Epithelial Cells/pathology , Epithelium/pathology , Fibroblasts/pathology , Humans , Lung/pathology , Myofibroblasts/pathology , Risk Factors
3.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L600-L607, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34318695

ABSTRACT

The month of September is Pulmonary Fibrosis Awareness Month. In this context, we would like to highlight the concept of progressive pulmonary fibrosis, a common denominator/phenotype of many interstitial lung diseases other than idiopathic pulmonary fibrosis, leading to clinical deterioration, decreased quality of life, and high mortality.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Phenotype , Quality of Life
4.
Thorax ; 76(2): 152-160, 2021 02.
Article in English | MEDLINE | ID: mdl-33298584

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILA) occur in around 10% of subjects over 60 years, and are associated with a higher rate of all-cause mortality. The pathogenic mechanisms are unclear, and the putative contribution of alterations in the immune response has not been explored. Normal ageing is associated with immune deficiencies, including Naïve T-cell decrease and greater expression of the proliferative-limiting, co-inhibitory receptor killer-cell lectin-like receptor G1 (KLRG1). OBJECTIVE: To evaluate the frequency and activation state of different T-cell subpopulations in ILA subjects. METHODS: Peripheral blood mononuclear cells were obtained from 15 individuals with ILA, 21 age-matched controls and 28 healthy young subjects. T-cells phenotype was characterised by flow cytometry, and proliferation and activation by stimulation with anti-CD3/anti-CD28 or phorbol myristate acetate/ionomycin; KLRG1 isoforms were evaluated by western blot and cytokines were quantified by ELISA and Multiplex. RESULTS: A significant increase of Naïve CD4+T cells together with a decrease of central and effector memory CD4+T cells was observed in ILA compared with age-matched controls. CD4+T cells from ILA subjects exhibited greater basal proliferation, which raised after anti-CD3/anti-CD28 stimulation. Additionally, a significant increase in the levels of interleukin-6 and interferon gamma was observed in isolated CD4+T cells and plasma of ILA subjects. They also displayed fewer KLRG1+/CD4+T cells with an increase of circulating E-cadherin, the ligand of KLRG1+. No changes were observed with CD8+T cell subsets. CONCLUSION: CD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/immunology , Lung Diseases, Interstitial/immunology , Aged , Case-Control Studies , Cell Proliferation , Cytokines/blood , Female , Humans , Lung Diseases, Interstitial/diagnostic imaging , Male , Middle Aged , Phenotype , Tetradecanoylphorbol Acetate
5.
Eur Respir J ; 58(3)2021 09.
Article in English | MEDLINE | ID: mdl-33542060

ABSTRACT

Interstitial lung diseases (ILDs) comprise a large and heterogeneous group of disorders of known and unknown aetiology characterised by diffuse damage of the lung parenchyma. In recent years it has become evident that patients with different types of ILD are at risk of developing progressive pulmonary fibrosis, known as progressive fibrosing ILD (PF-ILD). This is a phenotype that behaves similar to idiopathic pulmonary fibrosis, the archetypical example of progressive fibrosis. PF-ILD is not a distinct clinical entity but describes a group of ILDs with similar clinical behaviour. This phenotype may occur in diseases displaying distinct aetiologies and different biopathology during their initiation and development. Importantly, these entities may have the potential for improvement or stabilisation prior to entering the progressive fibrosing phase. The crucial questions are: 1) why does a subset of patients develop a progressive and irreversible fibrotic phenotype even with appropriate treatment? and 2) what are the possible pathogenic mechanisms driving progression? Here, we provide a framework highlighting putative mechanisms underlying progression, including genetic susceptibility, ageing, epigenetics, structural fibrotic distortion, aberrant composition and stiffness of the extracellular matrix, and the emergence of distinct pro-fibrotic cell subsets. Understanding the cellular and molecular mechanisms behind PF-ILD will provide the basis for identifying risk factors and appropriate therapeutic strategies.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Disease Progression , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung Diseases, Interstitial/genetics , Phenotype
6.
Eur Respir J ; 58(2)2021 08.
Article in English | MEDLINE | ID: mdl-33446609

ABSTRACT

BACKGROUND: Around 8-10% of individuals over 50 years of age present interstitial lung abnormalities (ILAs), but their risk factors are uncertain. METHODS: From 817 individuals recruited in our lung ageing programme at the Mexican National Institute of Respiratory Diseases, 80 (9.7%) showed ILAs and were compared with 564 individuals of the same cohort with normal high-resolution computed tomography to evaluate demographic and functional differences, and with 80 individuals randomly selected from the same cohort for biomarkers. We evaluated MUC5B variant rs35705950, telomere length, and serum levels of matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, interleukin (IL)-6, surfactant protein (SP)-D, α-Klotho and resistin. RESULTS: Individuals with ILAs were usually males (p<0.005), older than controls (p<0.0001), smokers (p=0.01), with a greater frequency of MUC5B rs35705950 (OR 3.5, 95% CI 1.3-9.4; p=0.01), and reduced diffusing capacity of the lung for carbon monoxide and oxygen saturation. Resistin, IL-6, SP-D, MMP-1, MMP-7 and MMP-13 were significantly increased in individuals with ILAs. Resistin (12±5 versus 9±4 ng·mL-1; p=0.0005) and MMP-13 (357±143 versus 298±116 pg·mL-1; p=0.004) were the most increased biomarkers. On follow-up (24±18 months), 18 individuals showed progression which was associated with gastro-oesophageal reflux disease (OR 4.1, 95% CI 1.2-12.9; p=0.02) and in females with diabetes mellitus (OR 5.3, 95% CI 1.0-27.4; p=0.01). CONCLUSIONS: Around 10% of respiratory asymptomatic individuals enrolled in our lung ageing programme show ILAs. Increased serum concentrations of pro-inflammatory molecules and MMPs are associated with ILAs.


Subject(s)
Lung Diseases, Interstitial , Female , Humans , Lung/diagnostic imaging , Male , Matrix Metalloproteinase 7 , Mucin-5B , Risk Factors
7.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805743

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal age-related lung disease whose pathogenesis involves an aberrant response of alveolar epithelial cells (AEC). Activated epithelial cells secrete mediators that participate in the activation of fibroblasts and the excessive deposition of extracellular matrix proteins. Previous studies indicate that matrix metalloproteinase 14 (MMP14) is increased in the lung epithelium in patients with IPF, however, the role of this membrane-type matrix metalloproteinase has not been elucidated. In this study, the role of Mmp14 was explored in experimental lung fibrosis induced with bleomycin in a conditional mouse model of lung epithelial MMP14-specific genetic deletion. Our results show that epithelial Mmp14 deficiency in mice increases the severity and extension of fibrotic injury and affects the resolution of the lesions. Gain-and loss-of-function experiments with human epithelial cell line A549 demonstrated that cells with a deficiency of MMP14 exhibited increased senescence-associated markers. Moreover, conditioned medium from these cells increased fibroblast expression of fibrotic molecules. These findings suggest a new anti-fibrotic mechanism of MMP14 associated with anti-senescent activity, and consequently, its absence results in impaired lung repair. Increased MMP14 in IPF may represent an anti-fibrotic mechanism that is overwhelmed by the strong profibrotic microenvironment that characterizes this disease.


Subject(s)
Epithelial Cells/pathology , Idiopathic Pulmonary Fibrosis/genetics , Matrix Metalloproteinase 14/genetics , Pulmonary Alveoli/metabolism , A549 Cells , Actins/genetics , Actins/metabolism , Animals , Bleomycin/administration & dosage , Cellular Senescence/genetics , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Humans , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Matrix Metalloproteinase 14/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360637

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by increased activation of fibroblasts/myofibroblasts. Previous reports have shown that IPF fibroblasts are resistant to apoptosis, but the mechanisms remain unclear. Since inhibition of the mitochondrial permeability transition pore (mPTP) has been implicated in the resistance to apoptosis, in this study, we analyzed the role of mitochondrial function and the mPTP on the apoptosis resistance of IPF fibroblasts under basal conditions and after mitomycin C-induced apoptosis. We measured the release of cytochrome c, mPTP opening, mitochondrial calcium release, oxygen consumption, mitochondrial membrane potential, ADP/ATP ratio, ATP concentration, and mitochondrial morphology. We found that IPF fibroblasts were resistant to mitomycin C-induced apoptosis and that calcium, a well-established activator of mPTP, is decreased as well as the release of pro-apoptotic proteins such as cytochrome c. Likewise, IPF fibroblasts showed decreased mitochondrial function, while mPTP was less sensitive to ionomycin-induced opening. Although IPF fibroblasts did not present changes in the mitochondrial membrane potential, we found a fragmented mitochondrial network with scarce, thinned, and disordered mitochondria with reduced ATP levels. Our findings demonstrate that IPF fibroblasts are resistant to mitomycin C-induced apoptosis and that altered mPTP opening contributes to this resistance. In addition, IPF fibroblasts show mitochondrial dysfunction evidenced by a decrease in respiratory parameters.


Subject(s)
Apoptosis , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Adenosine Triphosphate/metabolism , Calcium/metabolism , Cytochromes c/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/pathology , Ionomycin , Mitochondria/pathology , Mitomycin , Oxygen/metabolism , Primary Cell Culture
9.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1084-L1096, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32209025

ABSTRACT

Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene (mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout (Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.


Subject(s)
Alveolar Epithelial Cells/drug effects , Asbestosis/genetics , DNA Glycosylases/genetics , Lung/drug effects , Mitochondria/drug effects , Protein Kinases/genetics , Pulmonary Fibrosis/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Asbestos/administration & dosage , Asbestosis/etiology , Asbestosis/metabolism , Asbestosis/pathology , Bleomycin/administration & dosage , DNA Damage , DNA Glycosylases/deficiency , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Gene Expression Regulation , Hydrogen Peroxide/pharmacology , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Primary Cell Culture , Protein Kinases/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Titanium/administration & dosage
11.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L961-L976, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30785343

ABSTRACT

Matrix metalloprotease 13 (MMP13) deficiency in pulmonary fibrosis has described contradictory phenotypes on inflammatory and fibrotic responses after lung injury, and its role during lung fibrosis resolution is still undefined. MMP13 has been considered the main collagenase in rodents, and the remodeling of fibrillar collagen is widely attributed to the action of this enzyme. In this study we aimed to explore the role of MMP13 during lung fibrosis progression and resolution. Lung fibrosis was induced by intratracheal instillation, and inflammatory, fibrotic, and resolution stages were evaluated in Mmp13-null and wild-type (WT) mice. Bronchoalveolar lavage fluid was taken for cytokine array analysis and activity of gelatinases. Our results showed that MMP13 is upregulated mainly during two stages after lung injury, inflammation and resolution of fibrosis, and it is mainly expressed by alveolar and interstitial macrophages. Mmp13-null mice exhibited more extensive inflammation at 7 days after bleomycin treatment, and it was characterized by increased macrophage infiltration and significant alterations in proinflammatory cytokines. We also documented that Mmp13-deficient mice experienced more severe and prolonged lung fibrosis compared with WT mice. Delayed resolution in Mmp13-deficient lungs was characterized by a decreased overall collagenolytic activity and persistent fibrotic foci associated with emphysema-like areas. Together, our findings indicate that MMP13 plays an antifibrotic role and its activity is crucial in lung repair and restoration of tissue integrity during fibrosis resolution.


Subject(s)
Bleomycin/adverse effects , Gene Expression Regulation, Enzymologic/drug effects , Matrix Metalloproteinase 13 , Pulmonary Fibrosis , Up-Regulation/drug effects , Animals , Bleomycin/pharmacology , Bronchoalveolar Lavage , Cytokines/genetics , Cytokines/metabolism , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Matrix Metalloproteinase 13/biosynthesis , Matrix Metalloproteinase 13/genetics , Mice , Mice, Mutant Strains , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology
12.
Am J Respir Cell Mol Biol ; 59(1): 77-86, 2018 07.
Article in English | MEDLINE | ID: mdl-29373068

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive aging-associated disease of unknown etiology. A growing body of evidence indicates that aberrant activated alveolar epithelial cells induce the expansion and activation of the fibroblast population, leading to the destruction of the lung architecture. Some matrix metalloproteinases (MMPs) are upregulated in IPF, indicating that they may be important in the pathogenesis and/or progression of IPF. In the present study, we examined the expression of MMP28 in this disease and evaluated its functional effects in two alveolar epithelial cell lines and in human primary bronchial epithelial cells. We found that the enzyme is expressed in bronchial (apical and cytoplasmic localization) and alveolar (cytoplasmic and nuclear localization) epithelial cells in two different groups of patients with IPF. In vitro MMP28 epithelial silencing decreased the proliferation rate and delayed wound closing, whereas overexpression showed opposite effects, protecting from apoptosis and enhanced epithelial-mesenchymal transition. Our findings demonstrate that MMP28 is upregulated in epithelial cells from IPF lungs, where it may play a role in increasing the proliferative and migratory phenotype in a catalysis-dependent manner.


Subject(s)
Cell Nucleus/metabolism , Epithelium/metabolism , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/genetics , Matrix Metalloproteinases, Secreted/genetics , Pulmonary Alveoli/pathology , Up-Regulation/genetics , A549 Cells , Animals , Apoptosis , Biocatalysis , Cell Movement , Cell Proliferation , Cytoprotection , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Epithelium/pathology , Gene Silencing , Humans , Matrix Metalloproteinases, Secreted/metabolism , Protein Transport , Rats
13.
Am J Respir Cell Mol Biol ; 59(1): 65-76, 2018 07.
Article in English | MEDLINE | ID: mdl-29345973

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by the expansion of the myofibroblast population, excessive extracellular matrix accumulation, and destruction of the lung parenchyma. The R-spondin family (RSPO) comprises a group of proteins essential for development. Among them, RSPO2 is expressed primarily in the lungs, and its mutations cause severe defects in the respiratory tract. Interestingly, RSPO2 participates in the canonical Wingless/int1 pathway, a critical route in the pathogenesis of IPF. Thus, the aim of this study was to examine the expression and putative role of RSPO2 in this disease. We found that RSPO2 and its receptor leucine-rich G protein-coupled receptor 6 were upregulated in IPF lungs, where they localized primarily in fibroblasts and epithelial cells. Stimulation of IPF and normal lung fibroblasts with recombinant human RSPO2 resulted in the deregulation of numerous genes, although the transcriptional response was essentially distinct. In IPF fibroblasts, RSPO2 stimulation induced the up- or downregulation of several genes involved in the Wingless/int1 pathway (mainly from noncanonical signaling). In both normal and IPF fibroblasts, RSPO2 modifies the expression of genes implicated in several pathways, including the cell cycle and apoptosis. In accordance with gene expression, the stimulation of normal and IPF fibroblasts with RSPO2 significantly reduced cell proliferation and induced cell death. RSPO2 also inhibited collagen production and increased the expression of matrix metalloproteinase 1. Silencing RSPO2 with shRNA induced the opposite effects. Our findings demonstrate, for the first time to our knowledge, that RSPO2 is upregulated in IPF, where it appears to have an antifibrotic role.


Subject(s)
Fibroblasts/metabolism , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Intercellular Signaling Peptides and Proteins/genetics , Up-Regulation/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Proliferation/drug effects , Collagen/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fibroblasts/drug effects , Gene Silencing , Genome, Human , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Lung/metabolism , Lung/pathology , Matrix Metalloproteinase 1/metabolism , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/pharmacology , Up-Regulation/drug effects , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics
14.
Respir Res ; 19(1): 233, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30477498

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring of the lung parenchyma, leading to respiratory failure and death. High resolution computed tomography of the chest is often diagnostic for IPF, but its cost and the risk of radiation exposure limit its use as a screening tool even in patients at high risk for the disease. In patients with lung cancer, investigators have detected transcriptional signatures of disease in airway and nasal epithelial cells distal to the site of disease that are clinically useful as screening tools. Here we assessed the feasibility of distinguishing patients with IPF from age-matched controls through transcriptomic profiling of nasal epithelial curettage samples, which can be safely and repeatedly sampled over the course of a patient's illness. We recruited 10 patients with IPF and 23 age-matched healthy control subjects. Using 3' messenger RNA sequencing (mRNA-seq), we identified 224 differentially expressed genes, most of which were upregulated in patients with IPF compared with controls. Pathway enrichment analysis revealed upregulation of pathways related to immune response and inflammatory signaling in IPF patients compared with controls. These findings support the concept that fibrosis is associated with upregulation of inflammatory pathways across the respiratory epithelium with possible implications for disease detection and pathobiology.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Inflammation Mediators/metabolism , Nasal Mucosa/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Aged , Case-Control Studies , Cohort Studies , Female , Gene Expression Profiling/methods , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Male , Middle Aged , Nasal Mucosa/pathology
15.
FASEB J ; 31(6): 2520-2532, 2017 06.
Article in English | MEDLINE | ID: mdl-28258190

ABSTRACT

Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.


Subject(s)
Alveolar Epithelial Cells/pathology , Apoptosis/physiology , DNA, Mitochondrial/physiology , Pulmonary Fibrosis/etiology , Sirtuin 3/metabolism , A549 Cells , Animals , Antibiotics, Antineoplastic/toxicity , Asbestos/toxicity , Bleomycin/toxicity , DNA Damage , Humans , Mice , Mice, Knockout , Oxidants/toxicity , Pulmonary Fibrosis/metabolism , Sirtuin 3/genetics
16.
Am J Respir Cell Mol Biol ; 56(5): 667-679, 2017 05.
Article in English | MEDLINE | ID: mdl-28459387

ABSTRACT

Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.


Subject(s)
Congresses as Topic , Disease Models, Animal , Pulmonary Fibrosis/therapy , Societies, Medical , Animals , Endpoint Determination , Female , Humans , Male , Organisms, Genetically Modified , Reproducibility of Results
17.
J Pathol ; 240(2): 197-210, 2016 10.
Article in English | MEDLINE | ID: mdl-27425145

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Fibroblast growth factor-1 (FGF-1) belongs to the FGF family and has been shown to inhibit fibroblast collagen production and differentiation into myofibroblasts, and revert epithelial-mesenchymal transition by inhibiting TGF-ß1 signalling pathways. However, the precise role of FGF-1 in pulmonary fibrosis has not yet been elucidated. In this study, we explore the mechanisms underlying the anti-fibrogenic effect of FGF-1 in pulmonary fibrosis in vitro and in vivo by prolonged transient overexpression of FGF-1 (AdFGF-1) and TGF-ß1 (AdTGF-ß1) using adenoviral vectors. In vivo, FGF-1 overexpression markedly attenuated TGF-ß1-induced pulmonary fibrosis in rat lungs when given both concomitantly, or delayed, by enhancing proliferation and hyperplasia of alveolar epithelial cells (AECs). AdFGF-1 also attenuated the TGF-ß1 signalling pathway and induced FGFR1 expression in AECs. In vitro, AdFGF-1 prevented the increase in α-SMA and the decrease in E-cadherin induced by AdTGF-ß1 in normal human lung fibroblasts, primary human pulmonary AECs, and A549 cells. Concomitantly, AdTGF-ß1-induced Smad2 phosphorylation was significantly reduced by AdFGF-1 in both cell types. AdFGF-1 also attenuated the increase in TGFßR1 protein and mRNA levels in fibroblasts. In AECs, AdFGF-1 decreased TGFßR1 protein by favouring TGFßR1 degradation through the caveolin-1/proteasome pathway. Furthermore, FGFR1 expression was increased in AECs, whereas it was decreased in fibroblasts. In serum of IPF patients, FGF-1 levels were increased compared to controls. Interestingly, FGF-1 expression was restricted to areas of AEC hyperplasia, but not α-SMA-positive areas in IPF lung tissue. Our results demonstrate that FGF-1 may have preventative and therapeutic effects on TGF-ß1-driven pulmonary fibrosis via inhibiting myofibroblast differentiation, inducing AEC proliferation, regulating TGF-ß1 signalling by controlling TGFßR1 expression and degradation, and regulating FGFR1 expression. Thus, modulating FGF-1 signalling represents a potential therapy for the treatment of pulmonary fibrosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Epithelial Cells/metabolism , Fibroblast Growth Factor 1/genetics , Fibroblasts/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/genetics , Animals , Cadherins/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Epithelial Cells/pathology , Female , Fibroblast Growth Factor 1/metabolism , Fibroblasts/pathology , Humans , Phosphorylation , Proteasome Endopeptidase Complex , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Rats , Rats, Sprague-Dawley , Smad2 Protein/metabolism , Up-Regulation
19.
Am J Respir Cell Mol Biol ; 54(6): 831-42, 2016 06.
Article in English | MEDLINE | ID: mdl-26600305

ABSTRACT

Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-ß, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.


Subject(s)
Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/pathology , Lung Injury/complications , Lung Injury/pathology , Animals , Bleomycin , Bronchoalveolar Lavage Fluid , Cell Movement/drug effects , Chemotaxis/drug effects , Fibroblasts/drug effects , Gene Knockdown Techniques , Humans , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , Solubility , Transforming Growth Factor beta/pharmacology
20.
Eur Respir J ; 48(2): 538-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27390284

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-ß activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.


Subject(s)
Aging , Fibroblasts/cytology , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/pathology , Myofibroblasts/pathology , Signal Transduction , Aged , Animals , Epigenesis, Genetic , Genetic Drift , Humans , Mice , MicroRNAs/metabolism , Stochastic Processes , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL