Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Forensic Sci Int ; 319: 110638, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340848

ABSTRACT

Working with mitochondrial DNA from highly degraded samples is challenging. We present a whole mitogenome Illumina-based sequencing method suitable for highly degraded samples. The method makes use of double-stranded library preparation with hybridization-based target enrichment. The aim of the study was to implement a new user-friendly method for analysing many ancient DNA samples at low cost. The method combines the Swift 2S™ Turbo library preparation kit and xGen® panel for mitogenome enrichment. Swift allows to use low input of aDNA and own adapters and primers, handles inhibitors well, and has only two purification steps. xGen is straightforward to use and is able to leverage already pooled libraries. Given the ancient DNA is more challenging to work with, the protocol was developed with several improvements, especially multiplying DNA input in case of low concentration DNA extractions followed by AMPure® beads size selection and real-time pre-capture PCR monitoring in order to avoid cycle-optimization step. Nine out of eleven analysed samples successfully retrieved mitogenomes. Hence, our method provides an effective analysis of whole mtDNA, and has proven to be fast, cost-effective, straightforward, with utilisation in population-wide research of burial sites.


Subject(s)
DNA, Ancient , DNA, Mitochondrial/genetics , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing/methods , Cost-Benefit Analysis , Forensic Genetics/methods , Humans , Polymerase Chain Reaction
2.
J Med Microbiol ; 66(11): 1673-1683, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29068275

ABSTRACT

PURPOSE: Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is necessary due to the increasing frequency of severe infections in patients. The decreasing cost of next-generation sequencing enables us to obtain a comprehensive overview of genetic information in one step. The aim of this study is to demonstrate and evaluate the utility and scope of the application of web-based databases to next-generation sequenced (NGS) data. METHODOLOGY: The whole genomes of 11 clinical Klebsiella pneumoniae isolates were sequenced using Illumina MiSeq. Selected web-based tools were used to identify a variety of genetic characteristics, such as acquired antimicrobial resistance genes, multilocus sequence types, plasmid replicons, and identify virulence factors, such as virulence genes, cps clusters, urease-nickel clusters and efflux systems. RESULTS: Using web-based tools hosted by the Center for Genomic Epidemiology, we detected resistance to 8 main antimicrobial groups with at least 11 acquired resistance genes. The isolates were divided into eight sequence types (ST11, 23, 37, 323, 433, 495 and 562, and a new one, ST1646). All of the isolates carried replicons of large plasmids. Capsular types, virulence factors and genes coding AcrAB and OqxAB efflux pumps were detected using BIGSdb-Kp, whereas the selected virulence genes, identified in almost all of the isolates, were detected using CLC Genomic Workbench software. CONCLUSION: Applying appropriate web-based online tools to NGS data enables the rapid extraction of comprehensive information that can be used for more efficient diagnosis and treatment of patients, while data processing is free of charge, easy and time-efficient.


Subject(s)
DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Base Sequence , Databases, Genetic , Internet , Multilocus Sequence Typing , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL