Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Langmuir ; 37(29): 8886-8893, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34275300

ABSTRACT

Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an "in situ" sol-gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol-gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol-gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.

2.
Molecules ; 24(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340573

ABSTRACT

In this article, we report the synthesis of 2,4,6-substituted s-triazine-based organophosphorus compounds via a two-step process, which enables their production in high yields, and with a high purity as solids. In the first step, a Michaelis-Arbuzov rearrangement of cyanuric chloride with triethyl phosphite afforded 2,4,6-trisdiethoxyphosphinyl-1,3,5-triazine (HEPT). Subsequently, the nucleophilic substitution reaction on the triazine carbon was achieved, owing to the electron-withdrawing ability of the phosphonate groups. This characteristic of HEPT facilitated its derivatization with bi-functional amines, producing novel P-C containing bridged triazine organophosphorus compounds. The molecular structures of all of the compounds were confirmed by NMR spectroscopy, CHN elemental analysis, and single crystal X-ray analysis. In the thermogravimetric analysis in an N2 environment, >33% char formation was observed for the bridged compounds. The chemical composition analysis of the char obtained under the oxidative thermal decomposition of the bridged compounds confirmed the presence of phosphorus- and nitrogen-enriched species, which indicate their function in the condensed phase. Comparatively, the detection of HPO and H-C≡P in the gas phase during the pyrolysis of the bridged compounds can act as a source for PO•, which is known for its gas phase flame inhibition reactions. The synergy of significant char formation and the generation of intermediates leading to PO• during pyrolysis makes these molecules promising flame-retardant additives.


Subject(s)
Flame Retardants/chemical synthesis , Organophosphorus Compounds/chemical synthesis , Triazines/chemical synthesis , Humans , Molecular Structure , Phosphites/chemistry , Pyrolysis , Triazines/chemistry
3.
Nanoscale ; 14(12): 4635-4643, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262129

ABSTRACT

The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on N-vinyl imidazolium led to highly active and robust nano-catalysts in hydrogenation reactions, both in water and organic media. Of particular interest, their activity and selectivity could simply be manipulated through counter-anion exchange reactions. Hence, as a proof of concept, the activity of RuNPs could be reversibly turned on and off in the hydrogenation of toluene, while in the case of styrene, the hydrogenation could be selectively switched from ethylbenzene to ethylcyclohexane upon anion metathesis. According to X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses, these effects could originate not only from the relative hydrophobicity and solvation of the PIL corona but also from the nature and strength of the PIL-Ru interactions.

4.
Polymers (Basel) ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145998

ABSTRACT

Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a "solvent-free one-pot" process. The inorganic phases were obtained through "in situ" sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES). APTES acts as a coupling agent. Surprisingly when changing TEOS/APTES molar ratio (from 2.32 to 1.25), two opposite trends of glass transformation temperature (Tg) were observed for silica loading, i.e., at lower content, a decreased Tg (for 2 wt.% silica) and at higher content an increased Tg (for 6 wt.% silica) was observed. High-Resolution Transmission Electron Microscopy (HRTEM) showed the formation of multi-sheet silica-based nanoparticles with decreasing size at a lower TEOS/APTES molar ratio. Based on a recently proposed mechanism, the experimental results can be explained by the formation of a co-continuous hybrid network due to reorganization of the epoxy matrix around two different "in situ" sol-gel derived silicatic phases, i.e., micelles formed mainly by APTES and multi-sheet silica nanoparticles. Moreover, the concentration of APTES affected the size distribution of the multi-sheet silica-based nanoparticles, leading to the formation of structures that became smaller at a higher content. Flammability and forced-combustion tests proved that the nanocomposites exhibited excellent fire retardancy.

5.
ACS Appl Mater Interfaces ; 13(42): 49816-49827, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34653337

ABSTRACT

A novel conductive nanohydrogel hybrid support was prepared by in situ polymerization of polyaniline nanorods on an electrospun cationic hydrogel of poly(ε-caprolactone) and a cationic phosphine oxide macromolecule. Subsequently, the cellulase enzyme was immobilized on the hybrid support. Field-emission scanning electron microscopy and Brunauer-Emmett-Teller analyses confirmed a mesoporous, rod-like structure with a slit-like pore geometry for the immobilized support and exhibiting a high immobilization capacity and reduced diffusion resistance of the substrate. For comparison, the catalytic activity, storage stability, and reusability of the immobilized and free enzymes were evaluated. The results showed that the immobilized enzymes have higher thermal stability without changes in the optimal pH (5.5) and temperature (55 °C) for enzyme activity. A high immobilization efficiency (96%) was observed for the immobilized cellulose catalysts after optimization of parameters such as the pH, temperature, incubation time, and protein concentration. The immobilized enzyme retained almost 90% of its original activity after 4 weeks of storage and 73% of its original activity after the ninth reuse cycle. These results strongly suggest that the prepared hybrid support has the potential to be used as a support for protein immobilization.


Subject(s)
Aniline Compounds/metabolism , Cellulase/metabolism , Cellulose/metabolism , Hydrogels/metabolism , Aniline Compounds/chemistry , Biocatalysis , Cations/chemistry , Cations/metabolism , Cellulase/chemistry , Cellulose/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogels/chemistry , Hydrogen-Ion Concentration , Hypocreales/enzymology , Materials Testing , Temperature
6.
J Hazard Mater ; 416: 126237, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492989

ABSTRACT

A simple method is reported for the preparation of silver nanoparticle (AgNP) embedded pH-responsive hydrogel microparticle catalyst via Michael addition gelation and in-situ silver nitrate (AgNO3) reduction. The AgNP-hydrogel microsphere exhibited an efficient reduction of pollutants like 4-Nitrophenol (4-NP) and Congo red (CR) under acidic medium with turn over frequency (TOF) of ~170 h-1 and ~124 h-1 respectively. Interestingly, the activity of the catalysts was turned-OFF under a basic medium (≥ pH 12) due to the deswelling pH-responsive matrix surrounding the AgNPs. On the contrary, turning-OFF the hydrogenation of a cationic pollutant like methylene blue (MB) using high pH (≥ 12) was not possible, due to ionic interaction of MB molecules with the negatively charged catalyst at this pH. This feature was used to demonstrate selective hydrogenation of only MB from a mixture of 4-NP and MB. Finally, five recycling steps confirmed the reusability and practical application potential of the catalyst.


Subject(s)
Azo Compounds , Metal Nanoparticles , Catalysis , Hydrogels , Microspheres , Nitrophenols , Silver
7.
Materials (Basel) ; 13(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531984

ABSTRACT

Safety workwear often requires antistatic protection to prevent the build-up of static electricity and sparks, which can be extremely dangerous in a working environment. In order to make synthetic antistatic fibers, electrically conducting materials such as carbon black are added to the fiber-forming polymer. This leads to unwanted dark colors in the respective melt-spun fibers. To attenuate the undesired dark color, we looked into various possibilities including the embedding of the conductive element inside a dull side-by-side bicomponent fiber. The bicomponent approach, with an antistatic compound as a minor element, also helped in preventing the severe loss of tenacity often caused by a high additive loading. We could melt-spin a bicomponent fiber with a specific resistance as low as 0.1 Ωm and apply it in a fabric that fulfills the requirements regarding the antistatic properties, luminance and flame retardancy of safety workwear.

8.
ACS Appl Mater Interfaces ; 12(6): 7639-7649, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31972075

ABSTRACT

Design and synthesis of nanostructured responsive gels have attracted increasing attention, particularly in the biomedical domain. Polymer chain configurations and nanodomain sizes within the network can be used to steer their functions as drug carriers. Here, a catalyst-free facile one-step synthesis strategy is reported for the design of pH-responsive gels and controlled structures in nanoscale. Transparent and impurity free gels were directly synthesized from trivinylphosphine oxide (TVPO) and cyclic secondary diamine monomers via Michael addition polymerization under mild conditions. NMR analysis confirmed the consumption of all TVPO and the absence of side products, thereby eliminating post purification steps. The small-angle X-ray scattering (SAXS) elucidates the nanoscale structural features in gels, that is, it demonstrates the presence of collapsed nanodomains within gel networks and it was possible to tune the size of these domains by varying the amine monomers and the nature of the solvent. The fabricated gels demonstrate structure tunability via solvent-polymer interactions and pH specific drug release behavior. Three different anionic dyes (acid blue 80, acid blue 90, and fluorescein) of varying size and chemistry were incorporated into the hydrogel as model drugs and their release behavior was studied. Compared to acidic pH, a higher and faster release of acid blue 80 and fluorescein was observed at pH 10, possibly because of their increased solubility in alkaline pH. In addition, their release in phosphate buffered saline (PBS) and simulated body fluid (SBF) matrix was positively influenced by the ionic interaction with positively charged metal ions. In the case of hydrogel containing acid blue 90 a very low drug release (<1%) was observed, which is due to the reaction of its accessible free amino group with the vinyl groups of the TVPO. In vitro evaluation of the prepared hydrogel using human dermal fibroblasts indicates no cytotoxic effects, warranting further research for biomedical applications. Our strategy of such gel synthesis lays the basis for the design of other gel-based functional materials.


Subject(s)
Hydrogels/chemistry , Phosphines/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Liberation , Gels/chemical synthesis , Gels/chemistry , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Oxides/chemistry , Polymerization , Scattering, Small Angle
SELECTION OF CITATIONS
SEARCH DETAIL