Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Metab Eng ; 66: 68-78, 2021 07.
Article in English | MEDLINE | ID: mdl-33845171

ABSTRACT

Acetoin is widely used in food and cosmetics industries as a taste and fragrance enhancer. To produce (R)-acetoin in Saccharomyces cerevisiae, acetoin biosynthetic genes encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) from Bacillus subtilis and water-forming NADH oxidase (NoxE) from Lactococcus lactis were integrated into delta-sequences in JHY605 strain, where the production of ethanol, glycerol, and (R,R)-2,3-butanediol (BDO) was largely eliminated. We further improved acetoin production by increasing acetoin tolerance by adaptive laboratory evolution, and eliminating other byproducts including meso-2,3-BDO and 2,3-dimethylglycerate, a newly identified byproduct. Ara1, Ypr1, and Ymr226c (named Ora1) were identified as (S)-alcohol-forming reductases, which can reduce (R)-acetoin to meso-2,3-BDO in vitro. However, only Ara1 and Ypr1 contributed to meso-2,3-BDO production in vivo. We elucidate that Ora1, having a substrate preference for (S)-acetoin, reduces (S)-α-acetolactate to 2,3-dimethylglycerate, thus competing with AlsD-mediated (R)-acetoin production. By deleting ARA1, YPR1, and ORA1, 101.3 g/L of (R)-acetoin was produced with a high yield (96% of the maximum theoretical yield) and high stereospecificity (98.2%).


Subject(s)
Acetoin , Saccharomyces cerevisiae , Alcohol Oxidoreductases/genetics , Butylene Glycols , NAD , Saccharomyces cerevisiae/genetics
2.
J Am Chem Soc ; 140(2): 546-549, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29294291

ABSTRACT

Extensive effort has been devoted to engineering flavin-dependent halogenases (FDHs) with improved stability, expanded substrate scope, and altered regioselectivity. Here, we show that variants of rebeccamycin halogenase (RebH) catalyze enantioselective desymmetrization of methylenedianilines via halogenation of these substrates distal to their pro-stereogenic center. Structure-guided engineering was used to increase the conversion and selectivity of these reactions, and the synthetic utility of the halogenated products was shown via conversion of to a chiral α-substituted indole. These results constitute the first reported examples of asymmetric catalysis by FDHs.


Subject(s)
Aniline Compounds/chemistry , Methylene Chloride/chemistry , Catalysis , Flavins/chemistry , Halogenation , Molecular Structure , Protein Engineering , Stereoisomerism
3.
J Biol Chem ; 290(27): 17029-40, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-25995454

ABSTRACT

The P-glycoprotein (P-gp) encoded by the MDR1 gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein 90ß (Hsp90ß) and subsequent stabilization of PXR is a key mechanism in the regulation of MDR1 expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90ß at the Ser-225/254 residues. Phosphorylated Hsp90ß then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90ß enhances the down-regulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Rifampin/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Amino Acid Motifs , Casein Kinase II/chemistry , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Line, Tumor , Gene Expression Regulation/drug effects , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Humans , Molecular Docking Simulation , Phosphorylation/drug effects , Pregnane X Receptor , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Rifampin/chemistry
4.
Bioresour Technol ; 403: 130871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782190

ABSTRACT

Polyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time. Twenty different enzymes from various lipase families were evaluated for hydrolytic activity using substrates mimicking oxidized PE. Among them, Pelosinus fermentans lipase 1 (PFL1) specifically cleaved the ester bonds within the oxidized carbon-carbon backbone. Moreover, PFL1 (6 µM) degraded oxidized PE film, reducing the weight average and number average molecular weights by 44.6 and 11.3 %, respectively, within five days. Finally, structural analysis and molecular docking simulations were performed to elucidate the degradation mechanism of PFL1. The oxidized PE-degrading enzyme reported here will provide the groundwork for advancing PE waste treatment technology and for engineering microbes to repurpose PE waste into valuable chemicals.


Subject(s)
Biodegradation, Environmental , Lipase , Oxidation-Reduction , Polyethylene , Lipase/metabolism , Lipase/chemistry , Polyethylene/chemistry , Molecular Docking Simulation , Hydrolysis
5.
J Ind Microbiol Biotechnol ; 40(11): 1223-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24005991

ABSTRACT

Enzyme thermostabilization is a critical research topic due to potential industrial benefits. Among the various reasons to increase enzyme thermostability, enhancement of residual packing at the core of the enzyme structure has been commonly accepted as a successful strategy. However, structural changes that occur with residual packing enhancement may decrease enzyme activity. In this study, a strategy to minimize structural deformation by calculating the overlapping packing volume of a single-point mutation followed by applying a double-point mutation was suggested. Four double mutants, A38V_K23A, A75V_T83A, G80A_N106A, and G172A_V100A, were selected for the in vitro experiment; three of the four showed enhancements in both thermostability and catalytic activity. In particular, G80A_N106A showed 2.78 times higher catalytic activity compared with wild type.


Subject(s)
Bacillus subtilis/enzymology , Lipase/chemistry , Lipase/metabolism , Protein Engineering/methods , Amino Acid Substitution , Bacillus subtilis/genetics , Binding Sites , Biocatalysis , Computer Simulation , Enzyme Stability , Hydrophobic and Hydrophilic Interactions , Lipase/genetics , Mutagenesis, Site-Directed
6.
Bioresour Technol ; 378: 129015, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37019417

ABSTRACT

Saccharification is one of the most noteworthy processes in biomass-based biorefineries. In particular, the lytic polysaccharide monooxygenase has recently emerged as an oxidative cleavage-recalcitrant polysaccharide; however, there is insufficient information regarding its application to actual biomass. Accordingly, this study focused optimizing the recombinant expression level of a bacterial lytic polysaccharide monooxygenase from Thermobifida fusca (TfLPMO), which was characterized as a cellulolytic enzyme. Finally, the synergistic effect of the lytic polysaccharide monooxygenase and a commercial cellulase cocktail on the saccharification of agrowaste was investigated. TfLPMO functioned on various cellulosic and hemicellulosic substrates, and the combination of TfLPMO with cellulase exhibited a synergistic effect on the saccharification of agrowastes, resulting in a 19.2% and 14.1% increase in reducing sugars from rice straw and corncob, respectively. The results discussed herein can lead to an in-depth understanding of enzymatic saccharification and suggest viable options for valorizing agrowastes as renewable feedstocks in biorefineries.


Subject(s)
Cellulase , Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Cellulase/metabolism
7.
Int J Biol Macromol ; 225: 757-766, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36400208

ABSTRACT

Phasin is a surface-binding protein of polyhydroxyalkanoate (PHA) granules that is encoded by the phaP gene. As its expression increases, PHA granules become smaller, to increase their surface area, and are densely packed inside the cell, thereby increasing the PHA content. A wide range of PHA-producing bacteria have phaP genes; however, their PHA productivity differs, although they are derived from the cognate bacterial host cell. Modulating phasin expression could be a new strategy to enhance PHA production. This study aimed to characterize the effect of heterologous phasins on the reconstitution of E. coli BL21(DE3) and determine the best synergistic phaP gene combination to produce polyhydroxybutyrate (PHB). We identified novel phasins from a PHB high-producer strain, Halomonas sp. YLGW01, and introduced a combination of phaP genes into Escherichia coli. The resulting E. coli phaP1,3 strain had enhanced PHB production by 2.9-fold, leading to increased cell mass and increased PHB content from 48 % to 65 %. This strain also showed increased tolerance to inhibitors, such as furfural and vanillin, enabling the utilization of lignocellulose biosugar as a carbon source. These results suggested that the combination of phaP1 and phaP3 genes from H. sp. YLGW01 could increase PHB production and robustness.


Subject(s)
Escherichia coli , Plant Lectins , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Lectins/metabolism , Bacterial Proteins/chemistry , Hydroxybutyrates/metabolism , Polyesters/metabolism
8.
Bioprocess Biosyst Eng ; 35(1-2): 69-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21918839

ABSTRACT

Biodiesel is one of the most promising renewable fuel sources. Candida antarctica lipase B (CalB) has been used for biodiesel production because of its high activity and stability. However, CalB can only be utilized in industrial biodiesel production if the enzyme deactivation by methanol and the negative effects of glycerol can be mitigated. Methanol inhibition can be avoided by utilizing a stepwise addition of methanol, but there is no suitable method to reduce the glycerol effect. This study aims to use a membrane bioreactor system to remove glycerol during biodiesel production. In addition, methanol inhibition can be reduced by continuously feeding methanol through the membrane system. This continuous membrane bioreactor system can be used for efficient biodiesel production.


Subject(s)
Biofuels/analysis , Bioreactors , Candida/enzymology , Filtration/instrumentation , Glycerol/isolation & purification , Membranes, Artificial , Methanol/metabolism , Cellulose/chemistry , Enzyme Activation , Equipment Design , Equipment Failure Analysis , Glycerol/chemistry , Lipase/chemistry , Methanol/isolation & purification
9.
Bioresour Technol ; 359: 127501, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35753567

ABSTRACT

Given that traditional biorefineries have been based on microbial fermentation to produce useful fuels, materials, and chemicals as metabolites, saccharification is an important step to obtain fermentable sugars from biomass. It is well-known that glycosidic hydrolases (GHs) are responsible for the saccharification of recalcitrant polysaccharides through hydrolysis, but the discovery of lytic polysaccharide monooxygenase (LPMO), which is a kind of oxidative enzyme involved in cleaving polysaccharides and boosting GH performance, has profoundly changed the understanding of enzyme-based saccharification. This review briefly introduces the classification, structural information, and catalytic mechanism of LPMOs. In addition to recombinant expression strategies, synergistic effects with GH are comprehensively discussed. Challenges and perspectives for LPMO-based saccharification on a large scale are also briefly mentioned. Ultimately, this review can provide insights for constructing an economically viable lignocellulose-based biorefinery system and a closed-carbon loop to cope with climate change.


Subject(s)
Lignin , Mixed Function Oxygenases , Biomass , Lignin/metabolism , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism
10.
Bioresour Technol ; 339: 125616, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34304096

ABSTRACT

The recalcitrance of petroleum-based plastics causes severe environmental problems and has accelerated research into production of biodegradable polymers from inexpensive and sustainable feedstocks. Various microorganisms are capable of producing Polyhydroxybutyrate (PHB), a representative biodegradable polymer, under nutrient-limited conditions, among which CO2-utilizing microorganisms are of primary interest. Herein, we discuss recent progress on bacterial strains including proteobacteria, purple non-sulfur bacteria, and cyanobacteria in terms of CO2-containing carbon sources, PHB-production capability, and genetic modification. In addition, this review introduces recent technical approaches used to improve PHB production from CO2 such as two-stage bioprocesses and bioelectrochemical systems. Challenges and future perspectives for the development of economically feasible PHB production are also discussed. Finally, this review might provide insights into the construction of a closed-carbon-loop to cope with climate change.


Subject(s)
Carbon Dioxide , Hydroxybutyrates , Bacteria , Carbon , Plastics , Polyesters
11.
Nanoscale ; 13(15): 7348-7354, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33889912

ABSTRACT

Plasmonic PCR utilizing metallic nanoparticles has shown great advantages compared to the commercial thermocycler equipment in terms of cost, size and processing time. However, due to the strong fluorescence quenching, plasmonic nanoparticle-based PCR requires additional post-processing steps such as centrifugation and gel electrophoresis. This process increases the overall diagnostic time, offsetting the benefits of fast thermocycling. Here, we report a rapid and sensitive plasmonic photothermal PCR (PPT-PCR) assay method based on in situ end-point fluorescence detection. By using plasmonic magnetic bi-functional nanoparticles, PPT-PCR involving 30 thermocycles and fluorescence detection following magnetic separation has successfully shown that DNA targets can be detected within 5.5 minutes. The limit of detection (3.3 copies per µL) is comparable with that of the conventional real-time quantitative PCR; however, the assay time is about 5.5 times shorter for the PPT-PCR. The strategy of combining the photothermal effect and magnetic separation into a single particle will open new horizons in the development of fast and sensitive PCR-based biosensors for point-of care testing.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Polymerase Chain Reaction
12.
Bioresour Technol ; 340: 125737, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34426235

ABSTRACT

Endo-1,4-ß-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion. Site-saturated mutagenesis of the R49 residue led to the engineering of the active mutants with the trade-off between flexibility and rigidity. The most active mutant R49N improved the catalytic performance, including its catalytic efficiency (7.51-fold), conformational stability (0.7 °C improvement), and production of xylose oligomers (2.18-fold higher xylobiose and 1.72-fold higher xylotriose). The results discussed herein can be applied to enhance the catalytic performance of industrially important enzymes by controlling flexibility.


Subject(s)
Bacillus , Catalysis , Endo-1,4-beta Xylanases
13.
Bioresour Technol ; 337: 125479, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34320759

ABSTRACT

Given that (i) levulinic acid (LA) is one of the most significant platform chemicals derived from biomass and (ii) 4-hydroxyvaleric acid (4-HV) is a potential LA derivative, the aim of this study is to achieve chemoenzymatic valorization of LA, which was obtained from agricultural wastes, to 4-HV. The thermochemical process utilized agricultural wastes (i.e., rice straw and corncob) as feedstocks and successfully produced LA, ranging from 25.1 to 65.4 mM. Additionally, formate was co-produced and used as a hydrogen source for the enzymatic hydrogenation of LA. Finally, engineered 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis (eHBDH) was applicable for catalyzing the conversion of agricultural wastes-driven LA, resulting in a maximum concentration of 11.32 mM 4-HV with a conversion rate of 48.2%. To the best of our knowledge, this is the first report describing the production of 4-HV from actual biomass, and the results might provide insights into the valorization of agricultural wastes.


Subject(s)
Levulinic Acids , Valerates , Biomass
14.
Nat Chem ; 10(3): 318-324, 2018 03.
Article in English | MEDLINE | ID: mdl-29461523

ABSTRACT

Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.


Subject(s)
Metalloproteins/genetics , Mutagenesis , Biocatalysis , Metalloproteins/chemistry , Molecular Structure , Polymerase Chain Reaction
15.
ACS Synth Biol ; 6(3): 416-420, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28033708

ABSTRACT

Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450BM3, pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.


Subject(s)
Codon/genetics , Mutagenesis/genetics , Protein Engineering/methods , Cytochrome P-450 Enzyme System/genetics , Directed Molecular Evolution/methods , Gene Library , Mutation/genetics , Peptide Hydrolases/genetics
16.
Cell Signal ; 31: 124-134, 2017 02.
Article in English | MEDLINE | ID: mdl-28077325

ABSTRACT

In this study, we presented the role of 14-3-3σ to activate CK2-Hsp90ß-PXR-MDR1 pathway on rifampin and paclitaxel treated LS174T cells and in vivo LS174T cell-xenografted nude mouse model. Following several in vitro and in vivo experiments, rifampin and paclitaxel were found to be stimulated the CK2-Hsp90ß-PXR-MDR1 pathway. Of the proteins in this pathway, Pregnane X receptor (PXR) is a representative transcription factor of multidrug resistance protein 1 (MDR1). We constructed FLAG-PXR-LS174T stable cell lines and discovered 22 proteins that interacted with PXR on rifampin treatment. Among them, Hsp90ß and 14-3-3σ were isolated for further study. Both the proteins were found to be localized in cytoplasm on rifampin treatment by using confocal microscopy. On the other hand, PXR was found to be localized in nucleus after rifampin and paclitaxel treatment by using cell fractionation assay. In Western blot analysis, rifampin did not influence the expression of 14-3-3σ protein. Transient transfection of 14-3-3σ into LS174T cells induced overexpression of PXR; however, P-glycoprotein (P-gp) was not changed significantly. P-gp overexpression was induced only when 14-3-3σ transfected LS174T cells were treated with rifampin and paclitaxel, whereas 14-3-3σ inhibition by nonpeptidic inhibitor, BV02 and 14-3-3σ siRNA reduced rifampin induced PXR and P-gp expression. Cell survival rates were much higher at 14-3-3σ-LS174T stable cell lines than LS174T cells following paclitaxel and vincristine treatment. This data indicates that 14-3-3σ contributes to P-gp overexpression through interaction with PXR with rifampin and paclitaxel treatment.


Subject(s)
14-3-3 Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Biomarkers, Tumor/metabolism , Exoribonucleases/metabolism , Paclitaxel/pharmacology , Receptors, Steroid/metabolism , Rifampin/pharmacology , Amino Acid Sequence , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Cell Survival/drug effects , Chromatography, Liquid , Female , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice, Nude , Models, Biological , Pregnane X Receptor , Protein Binding/drug effects , Receptors, Steroid/chemistry , Tandem Mass Spectrometry
17.
Chem Sci ; 7(6): 3720-3729, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27347367

ABSTRACT

RebH variants capable of chlorinating substituted indoles ortho-, meta-, and para- to the indole nitrogen were evolved by directly screening for altered selectivity on deuterium-substituted probe substrates using mass spectrometry. This systematic approach allowed for rapid accumulation of beneficial mutations using simple adaptive walks and should prove generally useful for altering and optimizing the selectivity of C-H functionalization catalysts. Analysis of the beneficial mutations showed that structure-guided selection of active site residues for targeted mutagenesis can be complicated either by activity/selectivity tradeoffs that reduce the possibility of detecting such mutations or by epistatic effects that actually eliminate the benefits of a mutation in certain contexts. As a corollary to this finding, the precise manner in which the beneficial mutations identified led to the observed changes in RebH selectivity is not clear. Docking simulations suggest that tryptamine binds to these variants as tryptophan does to native halogenases, but structural studies will be required to confirm these models and shed light on how particular mutations impact tryptamine binding. Similar directed evolution efforts on other enzymes or artificial metalloenzymes could enable a wide range of C-H functionalization reactions.

18.
Arch Craniofac Surg ; 17(2): 63-67, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28913257

ABSTRACT

BACKGROUND: The subciliary approach is commonly used for reconstruction of orbital wall or zygomaticomaxillary fractures. However, this approach is associated with postoperative complications, especially lower eyelid malposition. We report the experience of managing postoperative lower eyelid malposition with triamcinolone acetonide. METHODS: A retrospective review was performed for all traumatic facial fractures requiring surgery via the subciliary approach at Chosun University Hospital in 2014. For each patient meeting inclusion criteria, the medical chart was reviewed for demographic information and postoperative course, including the presence of postoperative eyelid malposition or scleral show. RESULTS: The review identified 189 cases in which the subciliary approach was used, and postoperative lower eyelid malposition was found in 7 cases (3.7%). For these 7 patients, the mean therapeutic period (interval to correction of the malposition) was 10.5 weeks (range, 8 to 14 weeks). On average, patients received 3 injections of triamcinolone. In all cases, degrees of the malposition were improved, and none of the patients required an operative intervention to correct the malposition. CONCLUSION: Triamcinolone injection is an appropriate treatment modality for lower eyelid malposition after subciliary approach. Treatment duration is relatively short, requiring fewer than 4 outpatient clinic visits, with relatively earlier recovery compared to conservative "wait-and-see" management.

19.
Sci Rep ; 6: 29322, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27385052

ABSTRACT

Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.


Subject(s)
Carbon Sequestration/physiology , Carbonic Anhydrases/metabolism , Disulfides/metabolism , Escherichia coli/metabolism , Catalytic Domain/physiology , Kinetics , Temperature , Thermodynamics
20.
Mol Cells ; 39(3): 217-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743905

ABSTRACT

To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their anti-proliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity (IC50: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity (KD: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCI-N82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5.


Subject(s)
Complementarity Determining Regions/genetics , Receptor, ErbB-2/metabolism , Single-Chain Antibodies/metabolism , Single-Chain Antibodies/pharmacology , Antibody Affinity , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Peptide Library , Phosphorylation/drug effects , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL