Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Small ; : e2402585, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860560

ABSTRACT

Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.

2.
Small ; 18(21): e2201284, 2022 May.
Article in English | MEDLINE | ID: mdl-35460179

ABSTRACT

Repeated charge/discharge in aqueous zinc-ion batteries (ZIBs) commonly results in surface corrosion/passivation and dendrite formation on zinc anodes, which is a major challenge for the commercialization of zinc-based batteries. In this work, metallic Zn modified by self-assembled monolayers is described as a viable anode for ZIBs. ω-mercaptoundecanoic acid that is spontaneously adsorbed on Zn (MUDA/Zn) contributes to the simultaneous suppression of side reactions and dendrite formation in ZIBs. Though one-molecular-thick, densely packed alkyl chains prohibit H2 O and H+ from making direct contact with the underlying Zn, and surface carboxylate moieties (-COO- ) effectively repel anionic species (OH- ) in a solution, which renders a Zn anode inert against zincate formation within a wide range of pH. In contrast, the electrostatic attraction between surface-carboxylates and cations increases the concentration of Zn2+ on the surface of MUDA/Zn to facilitate Zn plating/stripping with less overpotentials. The high concentration of Zn2+ also results in an increased number of nucleation sites, which enhances the lateral growth of Zn with no formation of dendrites. As a result, MUDA/Zn shows excellent stability during prolonged Zn plating/stripping within a wide range of pH. The advantageous properties of MUDA/Zn are also retained in full-cells coupled with δ-MnO2 cathodes.

3.
Inorg Chem ; 60(8): 6047-6056, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33784818

ABSTRACT

A novel KGaS2 phosphor host that emits a cyan light was discovered to fill the cyan gap in the visible spectrum of phosphor-converted white light-emitting diodes (pc-wLEDs). KGaS2, belonging to the chalcogenometallates of the type ABQ2, was synthesized via a solid-state route with compositions optimized to achieve a phosphor host that would achieve the best photoluminescence (PL) properties. The activation with Eu2+ gave rise to PL in the cyan region of the spectrum with a PL maximum at ∼498 nm, as measured under the near-UV (420 nm) and blue (450 nm) excitations. The PL properties at the near-UV excitation are found to be much better, as compared to those obtained at the blue excitation. The Rietveld analysis, using high resolution synchrotron X-ray diffraction calibrated at a wavelength of 1.522 Å and selected area electron diffraction (SAED) pattern analysis of the composition optimized with the highest PL intensity, revealed a centrosymmetric monoclinic structure in the C2/c space group. The stoichiometry of the optimized composition, as estimated using Rietveld refinement, was revealed as KGa0.921S1.882:Eu2+. The decay curve measurement, using time-resolved spectroscopy, yielded a 10% decay time of 0.41 µs, which is much smaller compared with the decay time of the commercially available ß-SIALON phosphor that has a 10% decay time of 1.71 µs. The white pc-LED, fabricated with a cyan phosphor, had a higher value on the color rendering index and a lower value for color correlated temperatures, as compared with the version fabricated without a cyan phosphor, which makes this novel phosphor suitable for applications as a pc-wLED.

4.
Small ; 14(49): e1803495, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30353995

ABSTRACT

KCrS2 is presented as a stable and high-rate layered material that can be used as a cathode in potassium-ion batteries. As far as it is known, KCrS2 is the only layered material with stoichiometric amounts of K+ , which enables coupling with a graphite anode for full-cell construction. Cr(III)/Cr(IV) redox in KCrS2 is also unique, because LiCrS2 and NaCrS2 are known to experience S2- /S2 2- redox. O3-KCrS2 is first charged to P3-K0.39 CrS2 and subsequently discharged to O'3-K0.8 CrS2 , delivering an initial discharge capacity of 71 mAh g-1 . The following charge/discharge (C/D) shows excellent reversibility between O'3-K0.8 CrS2 and P3-K0.39 CrS2 , retaining ≈90% of the initial capacity during 1000 continuous cycles. The rate performance is also noteworthy. A C/D rate increase of 100-fold (0.05 to 5 C) reduces the reversible capacity only by 39% (71 to 43 mAh g-1 ). The excellent cyclic stability and high rate performance are ascribed to the soft sulfide framework, which can effectively buffer the stress caused by K+ deinsertion/insertion. During the transformation between P3-K0.39 CrS2 and O'3-K0.8 CrS2 , the material resides mostly in the P3 phase, which minimizes the abrupt dimension change and allows facile K+ diffusion through spacious prismatic sites. Structural analysis and density functional theory calculations firmly support this reasoning.

5.
Phys Chem Chem Phys ; 20(41): 26405-26413, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30306168

ABSTRACT

Here, we propose a new and logical approach to systematically treat the configurational diversity in density functional theory (DFT) calculations. To tackle this issue, we select Li0.5CoO2 as a representative example because it is one of the most extensively studied cathodes in Li-ion batteries (LIBs), and it has a huge number of disordered configurations. To delineate the configurations that will match well with the experimentally measured macro-functions of redox potential, band gap energy, and magnetic moment, we adopt a multi-objective, non-dominated sorting, genetic algorithm (NSGA-III) that enables the simultaneous optimization of these three objective functions. The decision variables include configuration of the Li/vacancy, initial input for the magnetic moment distribution reflecting Co3+/Co4+ distribution, and initial input for the lattice parameter and Hubbard U. We use NSGA-III to separate the configurations that exhibit awkward objective function values, which allows us to pinpoint a set of plausible configurations that match the experimentally estimated values of the objective functions. The results reveal a plausible configuration that is a mixture of various ordered/disordered configurations rather than a simple ordered structure.

6.
Inorg Chem ; 56(16): 9814-9824, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28776994

ABSTRACT

A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi2Al2Si2N6:Eu2+ phosphors in the Eu2+-doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi2Al2Si2N6:Eu2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi2Al2Si2N6:Eu2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi2Al2Si2N6:Eu2+ phosphors.

7.
Phys Chem Chem Phys ; 19(25): 16702-16712, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28621354

ABSTRACT

A novel oxynitride compound, Pr4-xCaxSi12O3+xN18-x, synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

8.
Inorg Chem ; 55(5): 2534-43, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26901127

ABSTRACT

A Ca1.5Ba0.5Si5O3N6:Eu(2+) phosphor with a monoclinic lattice in the Cm space group exhibiting a composite structure consisting of CaSi2O2N2-like and BaSi6N8O-like structures was examined in terms of structure and luminescence. The luminescent properties of the Ca1.5Ba0.5Si5O3N6:Eu(2+) phosphor could be suitable for light-emitting diode applications since it exhibited a promising yellow (or amber) emission peaking at ∼ 570-590 nm at excitations of 450-460 nm. The present investigation was focused on verifying the composite structure by employing quantum mechanical calculations such as the Hartree-Fock ab initio calculation and a density functional theory calculation along with precise structural and compositional analyses. The two-peak emission behavior ascribed to the composite structure was also examined in terms of continuous wave and time-resolved photoluminescence. In addition, the energy transfer between two activator sites ascribed to the composite structure was examined in detail.

9.
Inorg Chem ; 55(20): 10310-10319, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27676461

ABSTRACT

A solid-state combinatorial chemistry approach, which used the A-Ge-O (A = Li, K, Rb) system doped with a small amount of Mn4+ as an activator, was adopted in a search for novel red-emitting phosphors. The A site may have been composed of either a single alkali metal ion or of a combination of them. This approach led to the discovery of a novel phosphor in the above system with the chemical formula Li3RbGe8O18:Mn4+. The crystal structure of this novel phosphor was solved via direct methods, and subsequent Rietveld refinement revealed a trigonal structure in the P3̅1m space group. The discovered phosphor is believed to be novel in the sense that neither the crystal structure nor the chemical formula matches any of the prototype structures available in the crystallographic information database (ICDD or ICSD). The measured photoluminescence intensity that peaked at a wavelength of 667 nm was found to be much higher than the best intensity obtained among all the existing A2Ge4O9 (A = Li, K, Rb) compounds in the alkali-germanate system. An ab initio calculation based on density function theory (DFT) was conducted to verify the crystal structure model and compare the calculated value of the optical band gap with the experimental results. The optical band gap obtained from diffuse reflectance measurement (5.26 eV) and DFT calculation (4.64 eV) results were in very good agreement. The emission wavelength of this phosphor that exists in the deep red region of the electromagnetic spectrum may be very useful for increasing the color gamut of LED-based display devices such as ultrahigh-definition television (UHDTV) as per the ITU-R BT.2020-2 recommendations and also for down-converter phosphors that are used in solar-cell applications.

10.
Inorg Chem ; 54(4): 1829-40, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25594669

ABSTRACT

The discovery of novel phosphors for use in light emitting diodes (LED) has gained in significance because LED-based solid-state lighting applications now attract a great deal of attention for energy savings and environmental concerns. Recent research trends have centered on the discovery of novel phosphors, not on slight variations of well-known phosphors. In a real sense, novelty goes beyond simple variations or improvements in existing phosphors. A brilliant strategy for the discovery of novel phosphors is to introduce an appropriate activator to existing inorganic compounds. These compounds have structures that are well-defined in crystallographic structure databases, but they have never been considered as a phosphor host. Another strategy is to discover new host compounds with structures that cannot be found in existing databases. We have simultaneously pursued both strategies by employing metaheuristics-assisted combinatorial material search techniques. In the present investigation, we screened a search space consisting of Ln-Al-Si-O-N (Ln = Y, La, Gd, Lu), and thereby we discovered a blue-light-emitting novel phosphor, Gd3Al(3+x)Si(3-x)O(12+x)N(2-x):Ce(3+), with a monoclinic system in the C2 space group--a potential candidate for UV-LED applications.

11.
J Am Chem Soc ; 136(6): 2363-73, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24437942

ABSTRACT

Most of the novel phosphors that appear in the literature are either a variant of well-known materials or a hybrid material consisting of well-known materials. This situation has actually led to intellectual property (IP) complications in industry and several lawsuits have been the result. Therefore, the definition of a novel phosphor for use in light-emitting diodes should be clarified. A recent trend in phosphor-related IP applications has been to focus on the novel crystallographic structure, so that a slight composition variance and/or the hybrid of a well-known material would not qualify from either a scientific or an industrial point of view. In our previous studies, we employed a systematic materials discovery strategy combining heuristics optimization and a high-throughput process to secure the discovery of genuinely novel and brilliant phosphors that would be immediately ready for use in light emitting diodes. Despite such an achievement, this strategy requires further refinement to prove its versatility under any circumstance. To accomplish such demands, we improved our discovery strategy by incorporating an elitism-involved nondominated sorting genetic algorithm (NSGA-II) that would guarantee the discovery of truly novel phosphors in the present investigation. Using the improved discovery strategy, we discovered an Eu(2+)-doped AB5X8 (A = Sr or Ba, B = Si and Al, X = O and N) phosphor in an orthorhombic structure (A21am) with lattice parameters a = 9.48461(3) Å, b = 13.47194(6) Å, c = 5.77323(2) Å, α = ß = γ = 90°, which cannot be found in any of the existing inorganic compound databases.

12.
Opt Lett ; 39(6): 1410-3, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24690800

ABSTRACT

The mechanoluminescence (ML) of SrAl2O4:Eu(+), Dy(3+) (SAO) has been of particular interest based on the possibility that these materials could be used as nondestructive, reproducible stress (or load) sensors. However, there has been no in-depth study of ML under a cyclic load. It was found that a cyclic load generated harmonics in the ML response. The second harmonic term exhibiting a doubled frequency was significant, but the others could be ignored. In addition, hysteresis behavior was observed in the ML and was examined by comparison with the hysteresis that is typical in piezoelectricity.

13.
Opt Lett ; 38(10): 1739-41, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23938929

ABSTRACT

Energy transfer, which affects the entire performance of luminescent material, has been generally treated as an averaged parameter by assuming the host material to be a homogeneous continuum. However, energy transfer should be investigated in association with the crystallographic local structure around an activator site. To accomplish this, we established an analytical model and derived comprehensive rate equations, elucidating the relationship between the local structure and energy transfer behavior of La(4-x)Ca(x)Si12O(3+x)N(18-x):Eu2+, which is a recently discovered luminescent material for use in light-emitting diodes. Using the rate-equation model with the assistance of particle swarm optimization, the full-scale decay curves of donors and acceptors located at different crystallographic sites was computed.

14.
Article in English | MEDLINE | ID: mdl-36898053

ABSTRACT

Although there are many cathode candidates for sodium-ion batteries (NIBs), NaCrO2 remains one of the most attractive materials due to its reasonable level of capacity, nearly flat reversible voltages, and high thermal stability. However, the cyclic stability of NaCrO2 needs to be further improved in order to compete with other state-of-the-art NIB cathodes. In this study, we show that Cr2O3-coated and Al-doped NaCrO2, which is synthesized through a simple one-pot synthesis, can achieve unprecedented cyclic stability. We confirm the preferential formation of a Cr2O3 shell and a Na(Cr1-2xAl2x)O2 core, rather than xAl2O3/NaCrO2 or Na1/1+2x(Cr1/1+2xAl2x/1+2x)O2, through spectroscopic and microscopic methods. The core/shell compounds exhibit superior electrochemical properties compared to either Cr2O3-coated NaCrO2 without Al dopants or Al-doped NaCrO2 without shells because of their synergistic contributions. As a result, Na(Cr0.98Al0.02)O2 with a thin Cr2O3 layer (5 nm) shows no capacity fading during 1000 charge/discharge cycles while maintaining the rate capability of pristine NaCrO2. In addition, the compound is inert against humid air and water. We also discuss the reasons for the excellent performance of Cr2O3-coated Na(Cr1-2xAl2x)O2.

15.
RSC Adv ; 12(48): 31156-31166, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36349042

ABSTRACT

When constructing a partially occupied model structure for use in density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations, the selection of appropriate configurations has been a vexing issue. Random sampling and the ensuing low-Coulomb-energy entry selection have been routine. Here, we report a more efficient way of selecting low-Coulomb-energy configurations for a representative solid electrolyte, Li6PS5Cl. Metaheuristics (genetic algorithm, particle swarm optimization, cuckoo search, and harmony search), Bayesian optimization, and modified deep Q-learning are utilized to search the large configurational space. Ten configuration candidates that exhibit relatively low Coulomb energy values and thereby lead to more convincing DFT and AIMD calculation results are pinpointed along with computational cost savings by the assistance of the above-described optimization algorithms, which constitute an integrated optimization strategy. Consequently, the integrated optimization strategy outperforms the conventional random sampling-based selection strategy.

16.
Adv Sci (Weinh) ; 9(28): e2201648, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35863915

ABSTRACT

A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm-1 ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li5.5 PS4.5 Cl0.89 Br0.61 ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 ), which exhibits an ionic conductivity (σion ) of 6.70 mS cm-1 and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 to a humid atmosphere results in the least amount of H2 S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni0.9 Co0.05 Mn0.05 )O2 cathode and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li5.5 PS4.5 Cl0.89 Br0.61 and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.

17.
Adv Mater ; 34(29): e2202137, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35502520

ABSTRACT

The layered sodium transition metal oxide, NaTMO2 (TM = transition metal), with a binary or ternary phases has displayed outstanding electrochemical performance as a new class of strategy cathode materials for sodium-ion batteries (SIBs). Herein, an in-depth phase analysis of developed Na1-x TMO2 cathode materials, Na0.76 Ni0.20 Fe0.40 Mn0.40 O2 with P2- and O3-type phases (NFMO-P2/O3) is offered. Structural visualization on an atomic scale is also provided and the following findings are unveiled: i) the existence of a mixed-phase intergrowth layer distribution and unequal distribution of P2 and O3 phases along two different crystal plane indices and ii) a complete reversible charge/discharge process for the initial two cycles that displays a simple phase transformation, which is unprecedented. Moreover, first-principles calculations support the evidence of the formation of a binary NFMO-P2/O3 compound, over the proposed hypothetical monophasic structures (O3, P3, O'3, and P2 phases). As a result, the synergetic effect of the simultaneous existence of P- and O-type phases with their unique structures allows an extraordinary level of capacity retention in a wide range of voltage (1.5-4.5 V). It is believed that the insightful understanding of the proposed materials can introduce new perspectives for the development of high-voltage cathode materials for SIBs.

18.
Sci Rep ; 10(1): 20443, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235286

ABSTRACT

Most data-driven machine learning (ML) approaches established in metallurgy research fields are focused on a build-up of reliable quantitative models that predict a material property from a given set of material conditions. In general, the input feature dimension (the number of material condition variables) is much higher than the output feature dimension (the number of material properties of concern). Rather than such a forward-prediction ML model, it is necessary to develop so-called inverse-design modeling, wherein required material conditions could be deduced from a set of desired material properties. Here we report a novel inverse design strategy that employs two independent approaches: a metaheuristics-assisted inverse reading of conventional forward ML models and an atypical inverse ML model based on a modified variational autoencoder. These two unprecedented approaches were successful and led to overlapped results, from which we pinpointed several novel thermo-mechanically controlled processed (TMCP) steel alloy candidates that were validated by a rule-based thermodynamic calculation tool (Thermo-Calc.). We also suggested a practical protocol to elucidate how to treat engineering data collected from industry, which is not prepared as independent and identically distributed (IID) random data.

19.
RSC Adv ; 10(71): 43273-43281, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-35519719

ABSTRACT

NaCrO2 with high rate-capability is an attractive cathode material for sodium-ion batteries (NIBs). However, the amount of reversibly extractable Na+ ions is restricted by half, which results in relatively low energy density for practical NIB cathodes. Herein, we describe aliovalent-doped O3-Na0.9[Cr0.9Sn0.1]O2 (NCSnO) and O3-Na0.8[Cr0.9Sb0.1]O2 (NCSbO), both of which show high-voltage characteristics that translate to an increase in energy density. In contrast to NaCrO2, NCSnO and NCSbO can be reversibly charged to 3.80 and 3.95 V, respectively, delivering 0.5 Na+ along with Cr3+/4+ redox alone. The reversible chargeability to Na0.4[Cr0.9Sn0.1]O2 and Na0.3[Cr0.9Sb0.1]O2 is not associated with the suppression of Cr6+ formation. Both compounds show concentrations of Cr6+ that are higher than that of Na0.3CrO2, with an absence of O3' phases. This implies that aliovalent-doping contributes to a suppression of the Cr6+ migration into tetrahedral sites in the interslab space, which reduces the possibility of irreversible comproportionation. NCSnO and NCSbO deliver capacities comparable to that of NaCrO2, but show a higher average discharge voltage (2.94 V for NaCrO2; 3.14 V for NCSnO; 3.21 V for NCSbO), which leads to a noticeable increase in energy densities. The high-voltage characteristics of NCSnO and NCSbO are also validated via density-functional-theory calculations.

20.
Nat Commun ; 11(1): 86, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31900391

ABSTRACT

Here we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray powder diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.

SELECTION OF CITATIONS
SEARCH DETAIL