Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMC Infect Dis ; 23(1): 426, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353765

ABSTRACT

BACKGROUND: . The Mycobacterium tuberculosis Beijing genotype is globally spread lineage with important medical properties that however vary among its subtypes. M. tuberculosis Beijing 14717-15-cluster was recently discovered as both multidrug-resistant, hypervirulent, and highly-lethal strain circulating in the Far Eastern region of Russia. Here, we aimed to analyze its pathogenomic features and phylogeographic pattern. RESULTS: . The study collection included M. tuberculosis DNA collected between 1996 and 2020 in different world regions. The bacterial DNA was subjected to genotyping and whole genome sequencing followed by bioinformatics and phylogenetic analysis. The PCR-based assay to detect specific SNPs of the Beijing 14717-15-cluster was developed and used for its screening in the global collections. Phylogenomic and phylogeographic analysis confirmed endemic prevalence of the Beijing 14717-15-cluster in the Asian part of Russia, and distant common ancestor with isolates from Korea (> 115 SNPs). The Beijing 14717-15-cluster isolates had two common resistance mutations RpsL Lys88Arg and KatG Ser315Thr and belonged to spoligotype SIT269. The Russian isolates of this cluster were from the Asian Russia while 4 isolates were from the Netherlands and Spain. The cluster-specific SNPs that significantly affect the protein function were identified in silico in genes within different categories (lipid metabolism, regulatory proteins, intermediary metabolism and respiration, PE/PPE, cell wall and cell processes). CONCLUSIONS: . We developed a simple method based on real-time PCR to detect clinically significant MDR and hypervirulent Beijing 14717-15-cluster. Most of the identified cluster-specific mutations were previously unreported and could potentially be associated with increased pathogenic properties of this hypervirulent M. tuberculosis strain. Further experimental study to assess the pathobiological role of these mutations is warranted.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Phylogeography , Phylogeny , Genotype , Tuberculosis/epidemiology , Tuberculosis/microbiology
2.
BMC Microbiol ; 22(1): 50, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35135478

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis population in Russia is dominated by the notorious Beijing genotype whose major variants are characterized by contrasting resistance and virulence properties. Here we studied how these strain features could impact the progression of pulmonary tuberculosis (TB) concerning clinical manifestation and lethal outcome. RESULTS: The study sample included 548 M. tuberculosis isolates from 548 patients with newly diagnosed pulmonary TB in Omsk, West Siberia, Russia. Strains were subjected to drug susceptibility testing and genotyping to detect lineages, sublineages, and subtypes (within Beijing genotype). The Beijing genotype was detected in 370 (67.5%) of the studied strains. The strongest association with multidrug resistance (MDR) was found for epidemic cluster Beijing B0/W148 (modern sublineage) and two recently discovered MDR clusters 1071-32 and 14717-15 of the ancient Beijing sublineage. The group of patients infected with hypervirulent and highly lethal (in a mouse model) Beijing 14717-15 showed the highest rate of lethal outcome (58.3%) compared to Beijing B0/W148 (31.4%; P = 0.06), Beijing Central Asian/Russian (29.7%, P = 0.037), and non-Beijing (15.2%, P = 0.001). The 14717-15 cluster mostly included isolates from patients with infiltrative but not with fibrous-cavernous and disseminated TB. In contrast, a group infected with low virulent 1071-32-cluster had the highest rate of fibrous-cavernous TB, possibly reflecting the capacity of these strains for prolonged survival and chronicity of the TB process. CONCLUSIONS: The group of patients infected with hypervirulent and highly lethal in murine model 14717-15 cluster had the highest proportion of the lethal outcome (58.3%) compared to the groups infected with Beijing B0/W148 (31.4%) and non-Beijing (15.2%) isolates. This study carried out in the TB high-burden area highlights that not only drug resistance but also strain virulence should be considered in the implementation of personalized TB treatment.


Subject(s)
Genetic Variation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/mortality , Adolescent , Adult , Antitubercular Agents/pharmacology , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Female , Genotype , Humans , Male , Middle Aged , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Russia/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Virulence , Young Adult
3.
J Clin Microbiol ; 57(7)2019 07.
Article in English | MEDLINE | ID: mdl-31043465

ABSTRACT

The Central Asia outbreak (CAO) clade is a branch of the Mycobacterium tuberculosis Beijing genotype that is associated with multidrug resistance, increased transmissibility, and epidemic spread in parts of the former Soviet Union. Furthermore, migration flows bring these strains far beyond their areas of origin. We aimed to find a specific molecular marker of the Beijing CAO clade and develop a simple and affordable method for its detection. Based on the bioinformatics analysis of the large M. tuberculosis whole-genome sequencing (WGS) data set (n = 1,398), we identified an IS6110 insertion in the Rv1359-Rv1360 intergenic region as a specific molecular marker of the CAO clade. We further designed and optimized a multiplex PCR method to detect this insertion. The method was validated in silico with the recently published WGS data set from Central Asia (n = 277) and experimentally with M. tuberculosis isolates from European and Asian parts of Russia, the former Soviet Union, and East Asia (n = 319). The developed molecular assay may be recommended for rapid screening of retrospective collections and for prospective surveillance when comprehensive but expensive WGS is not available or practical. The assay may be especially useful in high multidrug-resistant tuberculosis (MDR-TB) burden countries of the former Soviet Union and in countries with respective immigrant communities.


Subject(s)
Molecular Diagnostic Techniques/methods , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/microbiology , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Genotype , Humans , Multiplex Polymerase Chain Reaction , Mutagenesis, Insertional/genetics , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Phylogeny , Reproducibility of Results , Species Specificity
4.
Indian J Med Res ; 146(1): 49-55, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29168460

ABSTRACT

BACKGROUND & OBJECTIVES: A complicated epidemiological situation characterized by significantly high tuberculosis (TB) morbidity is observed in West Siberia. This study was aimed to investigate the genetic characteristics of Mycobacterium tuberculosis circulating in the southern part of West Siberia (in the Omsk region). METHODS: From March 2013 to January 2015, 100 isolates of M. tuberculosis were obtained from patients with pulmonary TB living in the Omsk region. Drug susceptibility testing was performed on Lowenstein-Jensen medium (absolute concentration method). Genetic typing of isolates was carried out by variable number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) typing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The genetic types and characteristics of cluster strains were determined using 15 MIRU-VNTR loci. RESULTS: Thirty six VNTR types were found. Twenty six (26.0%) isolates had a unique profile, and the remaining 74 were grouped in 10 clusters containing from 2 to 23 isolates. The Beijing genotype was found in 72 isolates, 61 (85.0%) of which were part of five clusters that included two large clusters containing 23 isolates. Other genetic families, such as Latin-American Mediterranean (LAM, 11.0%), S family (2.0%) and Haarlem (4.0%), were also detected. The genetic family of 11 isolates could not be determined. Six different VNTR profiles were found in these non-classified isolates. Only 16 per cent of isolates were sensitive to anti-TB drugs. The katG315 (94.8%) and rpoB531 (92.2%) mutations were identified in 77 multidrug-resistant M. tuberculosis isolates. INTERPRETATION & CONCLUSIONS: This study showed that the M. tuberculosis population in the Omsk region was heterogeneous. The Beijing genotype predominated and was actively spreading. The findings obtained point to the need for the implementation of more effective preventive measures to stop the spread of drug-resistant M. tuberculosis strains.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Pulmonary/genetics , Adult , Alleles , Bacterial Typing Techniques , DNA, Bacterial/genetics , Female , Genotype , Humans , Male , Minisatellite Repeats/genetics , Mycobacterium tuberculosis/pathogenicity , Siberia/epidemiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology
5.
Microorganisms ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838390

ABSTRACT

Russia is a high-burden area for multidrug-resistant tuberculosis (MDR-TB). Here, we studied the epidemiological situation and drug resistance patterns of Mycobacterium tuberculosis in the Omsk region in Western Siberia. M. tuberculosis isolates (n = 851) were recovered from newly diagnosed TB patients in 2021. The isolates were tested by bacteriological and molecular methods, and long-term epidemiological data were analyzed. The TB incidence dec, this is not variablereased from 93.9 in 2012 to 48.1 in 2021, per 100,000 population, but the primary MDR-TB rate increased from 19.2% to 26.4%. The destructive forms of tuberculosis accounted for 37.8% of all cases, while 35.5% of patients were smear-positive. Of all isolates tested, 55.2% were culture-positive, of which 94.5% were further tested for phenotypic drug resistance and associated mutations. More than half (53.4%) of isolates were drug-resistant, 13.9% were monoresistant and 67.9% were MDR. Among MDR isolates, 40.4% were pre-XDR, and 19.2% were XDR. The spectrum of drug resistance included second-line drugs (new-generation fluoroquinolones, linezolid), which significantly increase the risk of an adverse outcome in patients. In conclusion, our results highlight the critical importance of monitoring drug resistance in circulating M. tuberculosis strains emerging due to ineffective treatment and active transmission.

6.
Viruses ; 14(10)2022 09 25.
Article in English | MEDLINE | ID: mdl-36298672

ABSTRACT

The Siberian Federal District is among the most affected regions with a high prevalence of HIV-infection and is characterized by high HIV-infection incidence rate and high mortality among the HIV-infected population. HIV drug resistance poses a major threat to public health and is associated with increased mortality, HIV incidence, and cost of epidemic control programs. A total of 1281 samples from HIV-infected patients were sequenced and analyzed with the DEONA and HIVdb Program to assess the prevalence of drug resistance mutations in patients in the Siberian Federal District in 2016-2018. The federal surveillance data obtained from 0.5% of HIV-infected patients during the long-term follow-up care in 2021 were also used. The incidence rate of HIV infection in the Siberian Federal District has declined since 2016: from 135.8 per 100 thousand population to 81.1 per 100 thousand population in 2021. Mutations associated with resistance to NRTI and NNRTI were found in 10.3% of the samples in 2016-2018 and in 28.4% of the samples in 2020. The rising prevalence of drug resistance in HIV-infected patients indicates that it is increasingly important to continuously monitor and improve the approaches to the use of effective treatment regimens.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Prevalence , Mutation , Anti-HIV Agents/pharmacology
8.
Emerg Microbes Infect ; 10(1): 1691-1701, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34380361

ABSTRACT

Mycobacterium tuberculosis strains of the early ancient sublineage of the Beijing genotype are mostly drug susceptible and mainly circulate in East Asia. We have recently discovered two clusters of this sublineage emerging in the Asian part of Russia (VNTR-defined 1071-32 and 14717-15 types) and, to our surprise, both were strongly MDR/XDR-associated. Here, we evaluated their pathogenic features. The clinical isolates and reference laboratory strain H37Rv were investigated in the C57BL/6 mouse model to assess their virulence and lethality properties. The BACTEC MGIT 960 system was used to study the in vitro growth characteristics. In the murine model, strains 396 (14717-15-cluster, from Buryatia, Far East) and 6691 (1071-32-cluster, from Omsk, Siberia) demonstrated contrasting properties. The 396-infected group had significantly higher mortality, more weight loss, higher bacterial burden, and more severe lung pathology. Furthermore, compared to the previously published data on other Russian epidemic Beijing strains (B0/W148, CAO, Central Asian Russian), strain 396 demonstrated the highest mortality. Under the in vitro growth experiment, cluster 14717-15 isolates had significantly shorter lag-phase. To conclude, low-virulent MDR strain 6691 belongs to the Beijing 1071-32-cluster widespread across FSU countries but at low prevalence. This corresponds to common expectation that multiple drug resistance mutations reduce fitness and virulence. In contrast, highly lethal and hypervirulent MDR strain 396 represents an intriguing Beijing 14717-15 cluster predominant only in Buryatia, Far East (16%), sporadically found beyond it, but not forming clusters of transmission. Further in-depth study of this most virulent Russian Beijing cluster is warranted.


Subject(s)
Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/mortality , Animals , Antitubercular Agents/pharmacology , Beijing , DNA, Bacterial/genetics , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Epidemics , Genotype , Male , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Russia/epidemiology , Virulence
9.
Sci Rep ; 11(1): 21392, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725411

ABSTRACT

Ancient sublineage of the Mycobacterium tuberculosis Beijing genotype is endemic and prevalent in East Asia and rare in other world regions. While these strains are mainly drug susceptible, we recently identified a novel clonal group Beijing 1071-32 within this sublineage emerging in Siberia, Russia and present in other Russian regions. This cluster included only multi/extensive drug resistant (MDR/XDR) isolates. Based on the phylogenetic analysis of the available WGS data, we identified three synonymous SNPs in the genes Rv0144, Rv0373c, and Rv0334 that were specific for the Beijing 1071-32-cluster and developed a real-time PCR assay for their detection. Analysis of the 2375 genetically diverse M. tuberculosis isolates collected between 1996 and 2020 in different locations (European and Asian parts of Russia, former Soviet Union countries, Albania, Greece, China, Vietnam, Japan and Brazil), confirmed 100% specificity and sensitivity of this real-time PCR assay. Moreover, the epidemiological importance of this strain and the newly developed screening assay is further stressed by the fact that all identified Beijing 1071-32 isolates were found to exhibit MDR genotypic profiles with concomitant resistance to additional first-line drugs due to a characteristic signature of six mutations in rpoB450, rpoC485, katG315, katG335, rpsL43 and embB497. In conclusion, this study provides a set of three concordant SNPs for the detection and screening of Beijing 1071-32 isolates along with a validated real-time PCR assay easily deployable across multiple settings for the epidemiological tracking of this significant MDR cluster.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Beijing/epidemiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Humans , Molecular Epidemiology , Mutation , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Polymorphism, Single Nucleotide , Tuberculosis, Multidrug-Resistant/epidemiology
10.
PLoS One ; 15(10): e0241269, 2020.
Article in English | MEDLINE | ID: mdl-33095842

ABSTRACT

BACKGROUND: HIV-1 circulating recombinant forms (CRFs) infections has been increasing in Former Soviet Union (FSU) countries in the recent decade. One is the CRF03_AB, which circulated in the region since late 1990s and probably became widespread in northwestern FSU countries. However, there is not much information provided about the dissemination of this recombinant. Here, we examine the prevalence, evolutionary dynamics and dispersion pattern of HIV-1 CRF03_AB recombinant. METHODS: We analyzed 32 independent studies and 151 HIV-1 CRF03_AB pol sequences isolated from different FSU countries over a period of 22 years. Pooled prevalence was estimated using a random effects model. Bayesian coalescent-based method was used to estimate the evolutionary, phylogeographic and demographic parameters. RESULTS: Our meta-analysis showed that the pooled prevalence of CRF03_AB infection in northwestern FSU region was 5.9% [95%CI: 4.1-7.8]. Lithuania (11.6%), Russia (5.9%) and Belarus (2.9%) were the most affected by CRF03_AB. We found that early region wide spread of HIV-1 CRF03_AB originated from one viral clade that arose in the city of Kaliningrad in 1992 [95%HPD: 1990-1995]. Fourteen migration route of this variant were found. The city of Kaliningrad is involved in most of these, confirming its leading role in CRF03_AB spread within FSU. Demographic reconstruction point to this is that CRF03_AB clade seems to have experienced an exponential growth until the mid-2000s and a decrease in recent years. CONCLUSION: These data provide new insights into the molecular epidemiology of CRF03_AB as well as contributing to the fundamental understanding of HIV epidemic in FSU.


Subject(s)
HIV Infections/epidemiology , HIV Infections/virology , HIV-1/genetics , Recombination, Genetic , Bayes Theorem , Humans , Phylogeny , Phylogeography , Prevalence , Time Factors , USSR/epidemiology
11.
Int J Antimicrob Agents ; 56(2): 106036, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32485278

ABSTRACT

The Mycobacterium tuberculosis Beijing genotype is a clinically and epidemiologically important lineage that is subdivided into ancient/ancestral and modern strains. In our previous study in western Siberia, we identified variable number of tandem repeats (VNTR)-based clusters within the early ancient sublineage of the Beijing genotype characterized by an unexpectedly high rate of extensive drug resistance (XDR). In the current study, next generation sequencing data were analysed to gain insight into genomic signatures underlying drug resistance of these strains. A total of 184 genomes of the Beijing early ancient sublineage from Russia (16), China (15), Japan (36), Korea (25), Vietnam (18), Thailand (73), and the USA (1) were used for phylogenetic analysis. The drug-resistant profile was deduced genotypically. The Russian isolates were distributed into two clusters and were all drug resistant, mainly pre-XDR and XDR. The largest of these clusters included only Russian isolates from remote locations in both Asian and European parts of the country. All its isolates had a quadruple drug resistance (to isoniazid, rifampin, ethambutol and streptomycin) due to the 6-mutation signature (KatG Ser315Thr, KatG Ile335Val, RpoB Ser450Leu, RpoC Asp485Asn, EmbB Gln497Arg, and RpsL Lys43Arg). In most samples, it was complemented with additional and different pncA, gyrA and rrs mutations leading to the pre-XDR/XDR genotype. Phylogenomic analysis indicates a distant origin of this Russian resistant cluster in the early 1970s but location and circumstances are yet to be clarified.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/epidemiology , Mutation , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/epidemiology , Beijing/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Genome, Bacterial , Genotype , Genotyping Techniques , Humans , Japan/epidemiology , Molecular Epidemiology , Mycobacterium tuberculosis/classification , Phylogeny , Polymorphism, Single Nucleotide , Republic of Korea/epidemiology , Russia/epidemiology , Thailand/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , United States/epidemiology , Vietnam/epidemiology , Whole Genome Sequencing
12.
Tuberculosis (Edinb) ; 108: 163-168, 2018 01.
Article in English | MEDLINE | ID: mdl-29523319

ABSTRACT

This population-based study characterized Mycobacterium tuberculosis isolates from HIV-positive and HIV-negative tuberculosis (TB) patients in the Omsk region in Western Siberia, Russia. We sought to gain insight into the major genotype families and epidemic and endemic clones of M. tuberculosis in the area with a high burden and adverse trend of TB/HIV coinfection. The study collection included M. tuberculosis isolates from 207 newly-diagnosed patients with pulmonary TB; 55 (26.5%) of patients were HIV-infected. The M. tuberculosis isolates were subjected to drug susceptibility testing and molecular typing based on spoligotyping and analysis of the robust genotype and cluster-specific markers. Patients with disseminated TB disease were more prevalent in the HIV-positive (34.5%) than in the HIV-negative group (4.6%) (P < .001). The Beijing genotype was predominant (62.3% of isolates), and its major subtypes were 94-32-cluster (Central Asian/Russian strain, n = 80) and B0/W148-cluster (successful Russian strain, n = 28). The main non-Beijing families were represented by Latin-American Mediterranean (14.5%), T family (11.1%), Ural (5.8%), and Haarlem (3.9%). Under multivariate logistic regression analysis, MDR was associated with Beijing genotype and not associated with HIV coinfection status (P < .001). Beijing genotype isolates were found more frequently in TB/HIV patients than in TB HIV-negative patients (74.5% versus 57.9%, respectively; P = .031). The non-Beijing genotypes were mainly drug susceptible except for the drug-resistant Ural SIT262 isolates. To summarize, the alarming situation in the Omsk region in Siberia regarding TB/HIV coinfection is seriously influenced by the active circulation of M. tuberculosis isolates of MDR-associated Beijing genotype. Among the non-Beijing families, emergence of the drug-resistant Ural family strains of spoligotype SIT262 warrants attention.


Subject(s)
Coinfection , Epidemics , HIV Infections/epidemiology , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology , Adult , Aged , Aged, 80 and over , Antitubercular Agents/therapeutic use , Chi-Square Distribution , Drug Resistance, Bacterial/genetics , Female , Genotype , Humans , Logistic Models , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Epidemiology , Multivariate Analysis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Odds Ratio , Phenotype , Prospective Studies , Risk Factors , Siberia/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/transmission , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL