Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mol Ecol ; 29(8): 1550-1559, 2020 04.
Article in English | MEDLINE | ID: mdl-32243629

ABSTRACT

Climate change is predicted to cause more extreme events, such as heatwaves, and different precipitation patterns. The effects of warming and short-term drought on soil microbial communities, in particular fungal communities, remain largely unexplored under field conditions. Here, we evaluated how the fungal community of a tropical grassland soil responds to these changes. A field experiment was carried out in a temperature free-air controlled enhancement (T-FACE) facility in Ribeirão Preto, Brazil. The isolated and combined effects of drought and a 2°C increase in temperature were investigated. Based on metabarcoding of the ITS2 region, a total of 771 operational taxonomic units were observed. While warming affected the community structure, drought affected the alpha diversity, and the interaction between warming and drought affected both diversity and structure. The change in community composition driven by warming affected only the less abundant species (>1% of the total sequences). The aspect of the fungal communities that was most affected was diversity, which was increased by drought (p < .05), mostly by reducing the dominance of a single species, as observed in the watered plots. In a phylogenetic context, some fungal taxa were favoured by changes in temperature (Hypocreales) and drought (Sordariales) or disadvantaged by both (Pleosporales). It was of note that a water deficit increased the abundance of phytopathogenic fungi, such as Curvularia, Thielavia and Fusarium species. Overall, our results provide evidence that fungal communities in tropical grassland soils have greater sensitivity to drought than to temperature, which might increase the incidence of certain soil-borne diseases.


Subject(s)
Mycobiome , Soil , Brazil , Climate Change , Droughts , Grassland , Mycobiome/genetics , Phylogeny , Soil Microbiology
2.
J Basic Microbiol ; 54(5): 333-9, 2014 May.
Article in English | MEDLINE | ID: mdl-23681744

ABSTRACT

This study investigates the production of glucoamylase from Aspergillus phoenicis in Machado Benassi (MB) medium using 1% maltose as carbon source. The maximum amylase activity was observed after four days of cultivation, on static conditions at 30 °C. Glucoamylase production was induced by maltose and inhibited by different glucose concentrations. The optimum of temperature and pH were 60-65 °C, and 4.5 or 5.0 to sodium acetate and Mcllvaine buffers, respectively. It was observed that the enzyme was totally stable at 30-65 °C for 1 h, and the pH range was 3.0-6.0. The enzyme was mainly activated by manganese (176%), and calcium (130%) ions. The products of starch hydrolysis were analyzed by thin layer chromatography and after 3 h, only glucose was detected, characterizing the amylolytic activity as a glucoamylase.


Subject(s)
Aspergillus/enzymology , Aspergillus/growth & development , Calcium/metabolism , Enzyme Activators/metabolism , Glucan 1,4-alpha-Glucosidase/isolation & purification , Glucan 1,4-alpha-Glucosidase/metabolism , Manganese/metabolism , Chromatography, Thin Layer , Culture Media/chemistry , Enzyme Inhibitors/metabolism , Fermentation , Glucose/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Maltose/metabolism , Sodium Acetate/metabolism , Starch/metabolism , Temperature
3.
Biotechnol Prog ; 40(1): e3384, 2024.
Article in English | MEDLINE | ID: mdl-37734048

ABSTRACT

Aspergillus species have been highlighted in enzyme production looking for industrial applications, notably, amylases are one of the most interesting enzymes. They are capable of hydrolyzing α-glycosidic linkages of starch and widely used in industrial processes to produce ethanol, glucose, and fructose syrup as well as in the textiles, detergents, and paper industries applications. In this context, this work aimed at the biochemical characterization of the glucoamylase from Aspergillus japonicus and its application in the bio-bleaching process of recycled paper. The optimum temperature and pH for the glucoamylase assay were standardized as 50°C and 5.5. After 1 h of incubation, glucoamylase retained 90% of its activity at 30-50°C. It also kept 70% of its activity in the pH range of 4.0-6.5 after an hour of incubation. The enzyme led to an increase of 30% in the relative whiteness of 10 dry grams of sulfite paper and magazine paper when applied along with commercial cellulase and 10 mM MnCl2 . In addition, after the treatments, the glucoamylase recovered activity was 30%-32%, which indicates a prolonged availability of the enzyme and can considerably curtail the redundant downstream process of the recycled paper bio-bleaching. Thus, the glucoamylase from A. japonicus has a significant role in bio-bleaching recycled paper, reducing the necessity of hard chemicals, and improving the industrial process in an interesting economic and ecological mode.


Subject(s)
Aspergillus , Glucan 1,4-alpha-Glucosidase , Glucan 1,4-alpha-Glucosidase/chemistry , Temperature , Starch , Hydrogen-Ion Concentration
4.
J Agric Food Chem ; 69(11): 3284-3288, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33720714

ABSTRACT

Interest in chitin-degrading enzymes has grown over the years, and microbial chitinases are the most attractive and promising candidates for the control of plant pests (fungi and insects). Currently, there are many studies on chitinases produced by cultivable microorganisms; however, almost none of them have achieved acceptable applicability as a biopesticide in the field. Approximately 99% of the microorganisms from soil cannot be isolated by conventional culture-dependent methods, thus having an enormous biotechnological/genetic potential to be explored. On the basis of this, the present paper aims to provide a brief overview of the metagenomic opportunities that have been emerging and allowing access to the biochemical potential of uncultivable microorganisms through the direct mining of DNA sequences recovered from the environment. This work also shortly discussed the future perspectives of functional and sequence-based metagenomic approaches for the identification of new chitinase-coding genes with potential for applications in several agricultural and biotechnological industries, especially in biological control.


Subject(s)
Chitinases , Animals , Biological Control Agents , Chitin , Chitinases/genetics , Fungi/genetics , Metagenomics
5.
Folia Microbiol (Praha) ; 65(1): 173-184, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31222689

ABSTRACT

Today, many microbial amylases are available commercially and they have almost completely replaced chemical hydrolysis in several industry processes. Amylases from microorganisms have a broad spectrum of industrial applications as they are more stable than amylases obtained from plants and animals. The objective of this work was to use potato baits in an Atlantic Forest remnant located in Ribeirão Preto, São Paulo, Brazil, in order to obtain amylase-producing fungi with potential for biotechnological application. In addition, the culture conditions for the fungal strain that presented higher production of glucoamylase were standardized using industrial wastes. For this, 6 PET bottles containing potatoes as baits were scattered at different points in an Atlantic forest remnant. After 6 days, the samples were collected, and the filamentous fungi were isolated in Petri dishes. Fungi screening was carried out in Khanna liquid medium with 1% starch Reagen®, at 30 °C, pH 6.0, under static conditions for 4 days. Proteins and glucoamylase activity were determined by Bradford and 3,5-dinitrosalicylic acid (DNS), respectively. Among all isolated fungi, A. carbonarius showed the highest glucoamylase production. Its best cultivation conditions were observed in Khanna medium, 4 days, at 30 °C, pH 6.0, under static condition with 0.1% yeast extract and 1% starch Reagen®. Wheat and brewing residues were also used as inducers for large quantities of glucoamylase production. A. carbonarius showed to be a good alternative for the wheat and brewing waste destinations in order to obtain high added value products.


Subject(s)
Aspergillus/enzymology , Aspergillus/isolation & purification , Glucan 1,4-alpha-Glucosidase/metabolism , Triticum/metabolism , Bioprospecting , Brazil , Forests , Hydrolysis , Starch/metabolism , Tropical Climate
6.
Appl Biochem Biotechnol ; 191(3): 1111-1126, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31960367

ABSTRACT

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-ß-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues. The peptide mass fingerprint and amino acid sequencing of the XPS and XSCB enzymes showed primary structure similarities with an endo-1,4-ß-xylanase from Aspergillus clavatus (XYNA_ASPCL). Both enzyme preparations presented good thermal stability at 50 °C and were stable over a wide range of pH and Vmax up to 2450 U/mg for XPS. XPS and XSCB were almost fully stable even after 24 h of incubation in the presence of up to 3 M NaCl, and their activity were not affected by 500 mM NaCl. Both enzyme preparations were capable of hydrolyzing paper sludge and sugarcane bagasse to release reducing sugars. These characteristics make this xylanase attractive to be used in the hydrolysis of biomass, particularly with brackish water or seawater.


Subject(s)
Aspergillus/enzymology , Cellulose/chemistry , Endo-1,4-beta Xylanases/metabolism , Sewage , Biomass , Carbohydrates/chemistry , Cellulase/metabolism , Cellulose/classification , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Paper , Peptides/chemistry , Phylogeny , Protein Conformation , Saccharum , Temperature , Water Pollutants, Chemical/analysis , Water Pollution , Water Purification/methods
7.
Int J Biol Macromol ; 102: 779-788, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28412339

ABSTRACT

Microbial amylases are used to produce ethanol, glucose and can be applied in textiles products, detergents and other industries. This study aimed to determine the best carbon source concentration to induce the amylase production by A. japonicus, and its purification and biochemical characterization. For that, this fungus was cultivated in Khanna medium, pH 5.5, for 4 days, at 25°C, in static condition, supplemented with potato starch and maltose in different concentrations. The fungal crude enzymatic extract was purified in a unique elution in DEAE-cellulose column and the molecular mass was determined as 72kDa. The optimum temperature and pH was 65°C and 5.0, respectively. Amylase remained 75% of its activity after one hour at 50°C and was stable in the pH range 3.0-7.0. The analysis of the end-products by thin layer chromatography showed only glucose formation, which characterizes the purified enzyme as a glucoamylase. Amylopectin was the best substrate for the enzyme assay and Mn+2 and Pb+2 were good glucoamylase activators. This activation, in addition to the biochemical characteristics are important results for future biotechnological applications of this glucoamylase in the recycling and deinking process by the paper industries.


Subject(s)
Aspergillus/enzymology , Glucan 1,4-alpha-Glucosidase/isolation & purification , Glucan 1,4-alpha-Glucosidase/metabolism , Lead/pharmacology , Manganese/pharmacology , Amylose/metabolism , Dose-Response Relationship, Drug , Edetic Acid/pharmacology , Enzyme Activation/drug effects , Glucan 1,4-alpha-Glucosidase/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Maltose/pharmacology , Mercaptoethanol/pharmacology , Molecular Weight , Phylogeny , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL