Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Mol Biol Rep ; 51(1): 579, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668953

ABSTRACT

Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Cathepsins , Humans , Cathepsins/metabolism , Cardiovascular Diseases/metabolism , Animals , Oxidative Stress , Atherosclerosis/metabolism , Biomarkers/metabolism , Lysosomes/metabolism , Extracellular Matrix/metabolism
2.
Mol Cell Biochem ; 478(10): 2337-2349, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36703094

ABSTRACT

There is increased risk of colon cancer in both men and women having diabetes. The objective of the study was to evaluate the role of simvastatin in colon cancer associated with type 2 diabetes mellitus. Diabetes was induced by administering high fat diet with low dose streptozotocin model. 1,2 dimethylhydrazine (25 mg/kg, sc) was used for colon cancer induction. MTT assay, scratch assay, clonogenic assay and annexin V-FITC assay using flow cytometry were performed on HCT-15 cell line. Simvastatin controlled diabetes and colon cancer in animal models and reduced mRNA expression of CDK4 in colon tissues. In vitro studies revealed that simvastatin showed a decrease in cell viability and produced dose dependent decrease in clone formation. There was decrease in the rate of migration with increase in concentration of simvastatin in scratch assay. Moreover, simvastatin induced apoptosis as depicted from annexin V-FITC assay using flow cytometry as well as that revealed by tunnel assay. Our data suggest that simvastatin exhibits protective role in colon cancer associated with diabetes mellitus and acts possibly via down regulation of CDK4 and induction of apoptosis and hence can be considered for repositioning in diabetic colon cancer.


Subject(s)
Colonic Neoplasms , Diabetes Mellitus, Type 2 , Male , Animals , Humans , Female , Simvastatin/pharmacology , Drug Repositioning , Colonic Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics
3.
Mol Cell Biochem ; 478(9): 2069-2080, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36609633

ABSTRACT

Stroke cachexia is associated with prolonged inflammation, muscle loss, poor prognosis, and early death of stroke patients. No particular treatment is available to cure the symptoms or disease. The present study aimed to evaluate the effect of a 5-HT1a agonist, buspirone on stroke cachexia. Wistar rats were injected with endothelin-1 to the bregma region of the brain to induce ischemic stroke followed by induction of cachexia after 4 days. Treatment with buspirone (3 mg/kg p.o) was given for 4 weeks after confirmation of cachexia in animals. Disease control animals exhibited decrease in wire hanging time and increase in foot fault numbers compared to normal animals. Disease control animals also showed weight loss, decrease in food intake, increased serum glucose and lipid profile along with high serum levels of inflammatory cytokines-TNF-α, IL-6 and decrease in weight of skeletal muscle and adipose tissues. Treatment with buspirone improves behavioural parameters along with increases food intake and body weight, decreased inflammatory cytokines IL-6 and TNF-α and serum glucose levels with increase in lipid profile. Buspirone also increased the weight of adipose tissue and maintain the skeletal muscle architecture and function as depicted in histopathological studies. Our study suggests that buspirone produces beneficial role in stroke cachexia by increasing body weight, food intake and adipose tissue depots by activating on 5-HT receptors. Buspirone decreases inflammatory markers in stroke cachexia although mechanism behind it was not fully understood. Buspirone decreases circulating blood glucose by stimulating glucose uptake in skeletal muscle via 5-HT receptors and maintained lipid profile. Buspirone was found to be effective in ameliorating cachectic conditions in stroke.


Subject(s)
Cachexia , Stroke , Rats , Animals , Cachexia/drug therapy , Cachexia/etiology , Tumor Necrosis Factor-alpha/pharmacology , Endothelin-1 , Buspirone/pharmacology , Interleukin-6 , Rats, Wistar , Cytokines/pharmacology , Muscle, Skeletal/pathology , Lipids , Stroke/complications , Stroke/drug therapy , Stroke/pathology , Glucose/pharmacology
4.
Mol Cell Biochem ; 478(10): 2221-2240, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36689040

ABSTRACT

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.


Subject(s)
COVID-19 , Solanum nigrum , Humans , COVID-19/complications , SARS-CoV-2 , Lung , Antiviral Agents/pharmacology
5.
Mol Cell Biochem ; 478(4): 807-820, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36098898

ABSTRACT

So far, the cardio-protective potential of antidiabetics is proved, but their effect on cardiovascular complications associated with cancer cachexia is not explored until now. Insulin resistance and glucose intolerance along with systemic inflammation are prominent in cachexia but the potential effect of antidiabetic agents especially those belonging to biguanide, DPP4 inhibitors and SGLT2 on the heart are not studied till now. In present study, the effect of metformin, vildagliptin, teneligliptin, dapagliflozin and empagliflozin on cardiovascular complications associated with cancer cachexia by using B16F1 induced metastatic cancer cachexia and urethane-induced cancer cachexia was studied. These antidiabetic agents proved to be beneficial against cachexia-induced atrophy of the heart, preserved ventricular weights, maintained cardiac hypertrophic index, preserved the wasting of cardiac muscles assessed by HE staining, Masson trichrome staining, periodic acid Schiff staining and picro-Sirius red staining. Altered cardiac gene expression was attenuated after treatment with selected antidiabetics, thus preventing cardiac atrophy. Also, antidiabetic agents treatment improved the serum creatinine kinase MB, Sodium potassium ATPase and collagen in the heart. Reduction in blood pressure and heart rate was observed after treatment with antidiabetic agents. Results of our study show that the selected antidiabetics prove to be beneficial in attenuating the cardiac atrophy and helps in regulation of hemodynamic stauts in cancer cachexia-induced cardiovascular complications. Our study provides some direction towards use of selected antidiabetic agents in the management of cardiovascular complications associated with cancer cachexia and the study outcomes can be useful in desiging clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Neoplasms , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Cachexia/drug therapy , Cachexia/etiology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Neoplasms/complications , Neoplasms/drug therapy , Diabetes Mellitus, Type 2/drug therapy
6.
Mol Cell Biochem ; 477(6): 1709-1723, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35254613

ABSTRACT

Cancer cachexia can be defined as a complex metabolic syndrome characterized by weight loss, anorexia, and emaciation due to the wasting of adipose tissue and skeletal muscle. In the last decade, much research has been done to decipher the role of lipid metabolism in cancer cachexia. Tumors, as well as host-derived factors, cause major metabolic changes in the body. Metabolic changes lead to higher energy expenditure by the host. To meet the high energy demand, the host utilizes fat depots stored in adipose tissues by a process known as lipolysis. High catabolic and low anabolic response leads to loss of adipose tissue. A significant insight has been made regarding adipose tissue "browning" bestow on thermogenic activities of adipocytes that result in catabolic energy expenditure. Both lipolysis and WAT browning play an important role in exhaustion adipose tissue. The goal of this review is to summarise what is currently known and about altered lipid metabolism and its utilization in cancer cachexia.


Subject(s)
Cachexia , Neoplasms , Adipose Tissue, White/metabolism , Cachexia/etiology , Cachexia/metabolism , Energy Metabolism , Humans , Lipid Metabolism , Lipolysis , Neoplasms/complications , Neoplasms/metabolism , Thermogenesis
7.
Can J Physiol Pharmacol ; 100(3): 240-251, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34614370

ABSTRACT

Cancer cachexia is mainly characterized by wasting of skeletal muscles and fat and body weight loss, along with severe complications of major organs like liver, heart, brain and bone. There can be diminishing performance of these major organs as cancer cachexia progresses, one such drastic effect on the cardiac system. In the present study, differential effect of histone deacetylase inhibitors (HDACi) on cardiac complications associated with cancer cachexia is studied. Two models were used to induce cancer cachexia: B16F1 induced metastatic cancer cachexia and Lewis lung carcinoma cell - induced cancer cachexia. Potential of Class I HDACi entinostat, Class II HDACi MC1568, and nonspecific HDACi sodium butyrate on cardiac complications were evaluated using the cardiac hypertrophy markers, hemodynamic markers, and cardiac markers along with histopathological evaluation of heart sections by Periodic acid-Schiff staining, Masson's trichrome staining, Picro-sirius red staining, and haematoxylin and eosin staining. Immunohistochemistry evaluation by vimentin and caspase 3 protein expression was evaluated. Entinostat showed promising results by attenuating the cardiac complications, and MC1568 treatment further exacerbated the cardiac complications, while non-conclusive effect were recorded after treatment with sodium butyrate. This study will be helpful in evaluating other HDACi for potential in cardiac complications associated with cancer cachexia.


Subject(s)
Benzamides/therapeutic use , Cachexia/drug therapy , Cachexia/etiology , Heart Diseases/drug therapy , Heart Diseases/etiology , Histone Deacetylase Inhibitors/therapeutic use , Neoplasms/complications , Pyridines/therapeutic use , Animals , Benzamides/pharmacology , Butyric Acid , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/adverse effects , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Pyridines/pharmacology , Pyrroles/adverse effects
8.
Mol Cell Biochem ; 476(3): 1365-1375, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392921

ABSTRACT

Owing to its poor prognosis, the World Health Organization (WHO) lists lung cancer on top of the list when it comes to growing mortality rates and incidence. Usually, there are two types of lung cancer, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which also includes adenocarcinoma, squamous cell carcinoma and large cell carcinomas. ARF, also known in humans as p14ARF and in the mouse as p19ARF, is a nucleolar protein and a member of INK4, a family of cyclin-independent kinase inhibitors (CKI). These genes are clustered on chromosome number 9p21 within the locus of CDKN2A. NSCLC has reported the role of p14ARF as a potential target. p14ARF has a basic mechanism to inhibit mouse double minute 2 protein that exhibits inhibitory action on p53, a phosphoprotein tumour suppressor, thus playing a role in various tumour-related activities such as growth inhibition, DNA damage, autophagy, apoptosis, cell cycle arrest and others. Extensive cancer research is ongoing and updated reports regarding the role of ARF in lung cancer are available. This article summarizes the available lung cancer ARF data, its molecular mechanisms and its associated signalling pathways. Attempts have been made to show how p14ARF functions in different types of lung cancer providing a thought to look upon ARF as a new target for treating the debilitating condition of lung cancer.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , DNA Damage , Genes, Tumor Suppressor , Humans , Mice , Neoplasm Staging , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Proteins/genetics
9.
Mol Cell Biochem ; 476(6): 2345-2364, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33587232

ABSTRACT

The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Plants, Edible/chemistry , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/therapeutic use , COVID-19/etiology , Ethnopharmacology/methods , Host-Pathogen Interactions/drug effects , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/drug therapy , Virus Internalization/drug effects , Virus Replication/drug effects , Virus Replication/physiology
10.
Rev Cardiovasc Med ; 21(3): 365-384, 2020 09 30.
Article in English | MEDLINE | ID: mdl-33070542

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), the host cell-binding site for SAR-CoV-2, poses two-fold drug development problems. First, the role of ACE2 itself is still a matter of investigation, and no specific drugs are available targeting ACE2. Second, as a consequence of SARS-CoV-2 interaction with ACE2, there is an impairment of the renin-angiotensin system (RAS) involved in the functioning of vital organs like the heart, kidney, brain, and lungs. In developing antiviral drugs for COVID-19, ACE2, RNA-dependent RNA polymerase (RdRp), and the specific enzymes involved in the viral and cellular gene expression have been the primary targets. SARS-CoV-2 being a new virus with unusually high mortality, there has been a need to get medicines in an emergency, and the drug repurposing has been a primary strategy. Considering extensive mortality and morbidity throughout the world, we have made a maiden attempt to discover the drugs interacting with RAS and identify the lead compounds from herbal plants using molecular docking. Both host ACE2 and viral RNA-dependent RNA polymerase (RdRp) and ORF8 appear to be the primary targets for the treatment of COVID-19. While the drug repurposing of currently approved drugs seems to be one strategy for the treatment of COVID-19, purposing phytochemicals may be another essential strategy for discovering lead compounds. Using in silico molecular docking, we have identified a few phytochemicals that may provide insights into designing herbal and synthetic therapeutics to treat COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/therapy , Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , Coronavirus Infections/metabolism , Humans , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/metabolism , SARS-CoV-2
11.
J Liposome Res ; 30(2): 182-196, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31060404

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in both men and women worldwide. It is the leading cancer killer in both men and women in every Ethnic Group. A major problem associated with chemotherapies against their lung cancer is the lack of selective toxicity, which results in a narrow therapeutic index thereby compromising clinical prognosis. To circumvent these challenges, the present investigation sought to develop a docetaxel-loaded nanostructured lipid carrier system (DTX-NLCS) for the treatment of lung cancer. A 3-factor/3-level Box-Behnken Design was applied to systematically optimize the DTX-NLCS parameters. The amount of drug, emulsifier concentration, and homogenization speed was selected as independent variables, while the particle size and % entrapment efficiency (%EE) were selected as dependent variables. The optimized batch parameters were 29.81 mg drug, 19.97% w/w emulsifier, and 13 200 (rpm) speed of homogenization with a mean particle size of 154.1 ± 3.13 nm and a mean %EE of 86.12 ± 3.48%. The in vitro lipolysis experiments revealed that the optimized DTX-NLCs were stabilized by 10% w/w PEG 4000 mono-stearate and exhibited an anti-lipolytic effect. Furthermore, the in vitro gastrointestinal stability studies (at pH-1.2, pH-4.5, pH-6.8, and pH-7.4) revealed that the optimized developed system could withstand various GI tract media. The in vitro dissolution studies depicted a pH-independent controlled-release consistent with the Weibull model. In vitro cytotoxicity studies using NCI-H460 cell lines further revealed that there was a reduction in IC50 values in the DTX-NLCS treated cells as compared to those treated with the pure drug, indicating an improved efficiency for the developed system.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Lipids/chemistry , Nanostructures/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Docetaxel/chemistry , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Drug Screening Assays, Antitumor , Drug Stability , Humans , Kinetics , Particle Size , Structure-Activity Relationship , Surface Properties , Surface-Active Agents/chemistry , Tumor Cells, Cultured
12.
J Microencapsul ; 37(8): 543-556, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32924677

ABSTRACT

AIM: To develop docetaxel (DT) and curcumin (CUR) co-loaded nanostructured lipid carriers (DTCR-NLCs) for ratiometric co-targeting to non-small cell lung carcinoma (NSCLC) cells. METHODS: The DTCR-NLCs were developed by employing a high-pressure homogenisation technique and optimised by employing a rotatable central composite design response surface methodology (RCCD-RSM) via the design of experiments (DoE) approach. RESULTS: The optimised DTCR-NLCs had a particle size (D90) of 150.2 ± 5.2 nm, Pdi of 0.263 ± 0.15, zeta potential of +26.3 ± 5.2 mv. The % drug loading (% DL) of DT and CUR was observed to be 1.38 ± 0.98 and 2.99 ± 1.24, respectively. Dissolution studies depicted a pH-independent drug release (≈98% drug release at 144 h). The DTCR-NLCs were stable and haemocompatible. MTT cell viability assay of DTCR-NLCs demonstrated considerably increased cytotoxicity towards NCI-H460 cells. CONCLUSIONS: The developed DTCR-NLCs heralds the future of an efficacious and safer Taxane therapy for NSCLC.


Subject(s)
Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Cobalt/chemistry , Curcumin/administration & dosage , Docetaxel/administration & dosage , Lipids/chemistry , Lung Neoplasms/drug therapy , Microspheres , Nanostructures/chemistry , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Survival , Drug Delivery Systems , Drug Screening Assays, Antitumor , Hemolysis , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Particle Size , Temperature , Tetrazolium Salts/chemistry , Thiazoles/chemistry , X-Ray Diffraction
13.
Metab Brain Dis ; 34(3): 775-787, 2019 06.
Article in English | MEDLINE | ID: mdl-30848471

ABSTRACT

The main objective of the present study is to investigate potential effects of PCA in OBX induced depressive-like behavior in rat model. PCA was administered at a dose of 100 mg/kg and 200 mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) expression], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Experimental findings reveals that OBX subjected rats showed alteration in behaviors like, increase in immobility time, ambulatory and rearing behaviors significantly, reduced BDNF level, 5-HT, DA,NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of PCA significantly attenuated behavioral and neurobiochemical alterations, thus, its antidepressant-like activity is largely mediated through modulation of neurotransmitter, endocrine and immunologic systems, mainly by improvements of BDNF, 5-HT, DA, NE, reduced MDA, IL-6, and TNF-α in hippocampus and cerebral cortex.


Subject(s)
Behavior, Animal/drug effects , Corticosterone/blood , Depression/drug therapy , Hydroxybenzoates/pharmacology , Animals , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Depression/metabolism , Disease Models, Animal , Dopamine/metabolism , Female , Hippocampus/drug effects , Male , Norepinephrine/metabolism , Rats, Wistar , Serotonin/metabolism
14.
Can J Physiol Pharmacol ; 95(3): 260-267, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28177689

ABSTRACT

The regulatory paradigm in cardiac hypertrophy involves alterations in gene expression that is mediated by chromatin remodeling. Various data suggest that class I and class II histone deacetylases (HDACs) play opposing roles in the regulation of hypertrophic pathways. To address this, we tested the effect of magnesium valproate (MgV), an HDAC inhibitor with 5 times more potency on class I HDACs. Cardiac hypertrophy was induced by partial abdominal aortic constriction in Wistar rats, and at the end of 6 weeks, we evaluated hypertrophic, hemodynamic, and oxidative stress parameters, and mitochondrial DNA concentration. Treatment with MgV prevented cardiac hypertrophy, improved hemodynamic functions, prevented oxidative stress, and increased mitochondrial DNA concentration. MgV treatment also increased the survival rate of the animals as depicted by the Kaplan-Meier curve. Improvement in hypertrophy due to HDAC inhibition was further confirmed by HDAC mRNA expression studies, which revealed that MgV decreases expression of pro-hypertrophic HDAC (i.e., HDAC2) without altering the expression of anti-hypertrophic HDAC5. Selective class I HDAC inhibition is required for controlling cardiac hypertrophy. Newer HDAC inhibitors that are class I inhibitors and class II promoters can be designed to obtain "pan" or "dual" natural HDAC "regulators".


Subject(s)
Cardiomegaly/prevention & control , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Myocardium/enzymology , Valproic Acid/pharmacology , Ventricular Remodeling/drug effects , Animals , Biomarkers/blood , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cardiomegaly/physiopathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Down-Regulation , Female , Gene Expression Regulation, Enzymologic , Hemodynamics/drug effects , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Lipids/blood , Male , Myocardium/pathology , Oxidative Stress/drug effects , Rats, Wistar , Time Factors
15.
Metab Brain Dis ; 32(2): 401-413, 2017 04.
Article in English | MEDLINE | ID: mdl-27785705

ABSTRACT

Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.


Subject(s)
Depression/drug therapy , Hippocampus/pathology , Hydroxybenzoates/therapeutic use , Neuroprotective Agents/therapeutic use , Stress, Psychological/drug therapy , Animals , Antioxidants/metabolism , Anxiety/psychology , Atrophy , Corticosterone/blood , Depression/etiology , Depression/psychology , Female , Lipid Peroxidation , Male , Mice , Motor Activity , Oxidative Stress/drug effects , Restraint, Physical , Stress, Psychological/complications , Stress, Psychological/psychology
16.
Can J Physiol Pharmacol ; 92(10): 849-57, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25243890

ABSTRACT

ER-α and ER-ß agonist 17ß-estradiol is reported to attenuate cardiac hypertrophy. Tamoxifen is a selective estrogen receptor modulator. Hence, the objective of this study was to investigate the effects of tamoxifen in myocardial infarction. For this, tamoxifen was administered to Sprague-Dawley rats for 1-14 days, and isoproterenol (ISO) (100 mg·(kg body mass)(-1)·day(-1)) was administered subcutaneously on the 13th and 14th days of the study in order to induce myocardial infarction, after which, various biochemical, cardiac, and morphometric parameters were evaluated. ISO produced significant dyslipidemia, hypertension, bradycardia, oxidative stress, and an increase in serum cardiac markers. Treatment with tamoxifen significantly controlled dyslipidemia, hypertension, bradycardia, oxidative stress, and reduced serum cardiac markers. The ISO control rats exhibited significant increases in the infarct size of the left ventricle (LV), LV cavity area, cardiac and LV hypertrophic indices, LV-wall thickness, cardiomyocyte diameter, and area. Treatment with tamoxifen significantly reduced infarction as well as hypertrophic and morphometric parameters. ISO also produced significant increases in the LV collagen level, decreases in Na(+)K(+) ATPase activity, and a reduction in the rate of pressure development and decay, which were prevented by tamoxifen treatment. The protective effect of tamoxifen on myocardial infarct was further confirmed by histopathological examination. Our data thus suggest that tamoxifen exerts beneficial effects in ISO-induced myocardial infarction.


Subject(s)
Adrenergic beta-Agonists/adverse effects , Isoproterenol/adverse effects , Myocardial Infarction/drug therapy , Selective Estrogen Receptor Modulators/therapeutic use , Tamoxifen/therapeutic use , Animals , Collagen/metabolism , Female , Heart Ventricles/metabolism , Heart Ventricles/pathology , Hemodynamics/drug effects , Lipid Metabolism/drug effects , Myocardial Infarction/chemically induced , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/metabolism
17.
Clin Exp Hypertens ; 36(5): 340-7, 2014.
Article in English | MEDLINE | ID: mdl-24047125

ABSTRACT

The present study was carried out to study the effect of spironolactone, atenolol, metoprolol, ramipril and perindopril on cardiovascular complications in neonatal model of diabetes in rats, induced by administering 90 mg/kg streptozotocin (STZ), i.p. in 2-day-old rats. Our data suggest that spironolactone, metoprolol and perindopril prevent not only the STZ-induced metabolic abnormalities but also cardiovascular complications as evident from the reduction in cholesterol, triglyceride and decrease in cardiac hypertrophy which are the initial symptoms of congestive heart failure. Metoprolol and perindopril appears to be beneficial agents as compared to atenolol and ramipril.


Subject(s)
Antihypertensive Agents/pharmacology , Atenolol/pharmacology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Metoprolol/pharmacology , Perindopril/pharmacology , Ramipril/pharmacology , Spironolactone/pharmacology , Animals , Animals, Newborn , Blood Pressure/drug effects , Cardiovascular Diseases/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Disease Models, Animal , Rats, Wistar
18.
Cancer Chemother Pharmacol ; 93(1): 55-70, 2024 01.
Article in English | MEDLINE | ID: mdl-37755518

ABSTRACT

BACKGROUND: The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS: For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS: Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS: Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.


Subject(s)
Colonic Neoplasms , Diabetes Mellitus, Type 2 , Animals , Blood Glucose , Vanadates/pharmacology , Vanadates/therapeutic use , Colonic Neoplasms/pathology , Apoptosis , Rhodamines/pharmacology , Rhodamines/therapeutic use
19.
Article in English | MEDLINE | ID: mdl-39008964

ABSTRACT

INTRODUCTION: Heart failure (HF) is caused by functional and structural irregularity leading to impaired ejection or filling capacity of the heart. HF leads to chronic inflammatory conditions in the heart leads to weight loss, anorexia, and muscle atrophy known as cachexia. The present study was carried out to investigate the role of Ezetimibe, an NRF2 activator, in cardiac cachexia and to develop a treatment strategy for cardiac cachexia. METHOD: Balb/c mice of either sex at 6-8 weeks of age were given 2 mg/kg of doxorubicin in 0.9% sodium chloride solution intraperitoneally (i.p.) for the alternate days for the first week and then once a week for the next 4 weeks. After induction of cardiac atrophy, treatment with Ezetimibe (1.5 mg/kg, p.o) was given for the next 4 weeks. RESULT: In the cardiac cachectic animals, a significant decrease in body weight, food, and water intake was observed. Cardiac cachectic animals showed a significant increase in serum glucose, total cholesterol, LDL, triglyceride, VLDL, CK-MB, LDH, and CRP levels. Cardiac atrophic index, heart weight to body weight ratios (HW/BW), right ventricular weight to heart weight ratios (RV/HW), and left ventricular weight to heart weight ratios (LV/HW), were significantly decreased in cardiac cachectic animals. The weights of the skeletal muscles such as EDL, gastrocnemius, soleus, tibialis anterior, and quadriceps muscles, and the weight of adipose tissue such as subcutaneous, visceral, perirenal, and brown adipose tissue were significantly decreased in the cardiac cachectic group relative to the normal group. Treatment with ezetimibe improves body weight, food intake, and water intake. Ezetimibe decreases serum glucose, total cholesterol, LDL, triglyceride, VLDL, CK-MB, LDH and CRP levels. Cardiac atrophic markers such as HW/BW, RV/HW, and LV/HW were improved. The weight of skeletal muscles and adipose tissue was increased after treatment with ezetimibe. CONCLUSION: Our data showed that the NRF2 activator, Ezetimibe produces a beneficial effect on cardiac cachexia in the doxorubicin-induced cardiac cachexia model. Ezetimibe was successful to reduce the levels of inflammatory cytokines, ameliorate the effects on cardiac muscle wasting, lipid levels, fat tissues, and skeletal muscles.

20.
ACS Appl Mater Interfaces ; 16(24): 30819-30832, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38845592

ABSTRACT

Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.


Subject(s)
Alginates , Anti-Bacterial Agents , Iron , Animals , Alginates/chemistry , Iron/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Rats , Skin/drug effects , Nanocomposites/chemistry , Wound Healing/drug effects , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Permeability , Tetracycline/chemistry , Tetracycline/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL