Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26755713

ABSTRACT

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Subject(s)
Blood Platelets/drug effects , Collagen/pharmacology , Platelet Activation/physiology , Protein-Lysine 6-Oxidase/physiology , Thrombophilia/enzymology , Animals , Blood Platelets/cytology , Carotid Artery Injuries/complications , Carotid Artery Thrombosis/etiology , Integrin alpha2beta1/physiology , Megakaryocytes/enzymology , Mice , Mice, Transgenic , Peptide Fragments/pharmacology , Platelet Adhesiveness/genetics , Platelet Adhesiveness/physiology , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Platelet Factor 4/genetics , Promoter Regions, Genetic , Protein-Lysine 6-Oxidase/genetics , Rats , Thrombophilia/genetics
2.
J Cell Physiol ; 230(12): 2891-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25975415

ABSTRACT

Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development.


Subject(s)
Cardiovascular Diseases/metabolism , Metabolic Diseases/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine A2 Receptor Agonists/therapeutic use , Adenosine A2 Receptor Antagonists/therapeutic use , Animals , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Humans , Metabolic Diseases/drug therapy , Molecular Targeted Therapy , Receptor, Adenosine A2B/drug effects , Signal Transduction
3.
J Biol Methods ; 3(4)2016.
Article in English | MEDLINE | ID: mdl-28008415

ABSTRACT

Bone marrow (BM) reticulin fibrosis (RF), revealed by silver staining of tissue sections, is associated with myeloproliferative neoplasms, while tools for quantitative assessment of reticulin deposition throughout a femur BM are still in need. Here, we present such a method, allowing via analysis of hundreds of composite images to identify a patchy nature of RF throughout the BM during disease progression in a mouse model of myelofibrosis. To this end, initial conversion of silver stained BM color images into binary images identified two limitations: variable color, owing to polychromatic staining of reticulin fibers, and variable background in different sections of the same batch, limiting application of the color deconvolution method, and use of constant threshold, respectively. By blind coding image identities, to allow for threshold input (still within a narrow range), and using shape filtering to further eliminate background we were able to quantitate RF in myelofibrotic Gata-1low (experimental) and wild type (control) mice as a function of animal age. Color images spanning the whole femur BM were batch-analyzed using ImageJ software, aided by our two newly added macros. The results show heterogeneous RF density in different areas of the marrow of Gata-1low mice, with degrees of heterogeneity reduced upon aging. This method can be applied uniformly across laboratories in studies assessing RF remodeling induced by aging or other conditions in animal models.

4.
J Exp Med ; 212(5): 649-63, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25870200

ABSTRACT

Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.


Subject(s)
Adenosine/metabolism , Aorta/metabolism , Endothelium, Vascular/metabolism , Hematopoietic Stem Cells/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine/genetics , Animals , Aorta/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endothelium, Vascular/cytology , Hematopoietic Stem Cells/cytology , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , Mice, Knockout , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Receptor, Adenosine A2B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL