Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.878
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38917788

ABSTRACT

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

2.
Cell ; 185(14): 2391-2393, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35768007

ABSTRACT

Acute mild respiratory SARS-CoV-2 infection can lead to a more chronic cognitive syndrome known as "COVID fog." New findings from Fernández-Castañeda et al. reveal how glial dysregulation and consequent neural circuit dysfunction may contribute to cognitive impairments in long COVID.


Subject(s)
COVID-19 , Cognitive Dysfunction , COVID-19/complications , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
3.
Cell ; 184(26): 6361-6377.e24, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34875226

ABSTRACT

Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.


Subject(s)
Hypothalamic Area, Lateral/metabolism , In Situ Hybridization, Fluorescence , Animals , Biomarkers/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hypothalamic Area, Lateral/cytology , Imaging, Three-Dimensional , Male , Mice, Inbred C57BL , Neurons/metabolism , Neuropeptides/metabolism , Proto-Oncogene Proteins c-fos/metabolism , RNA/metabolism , RNA-Seq , Single-Cell Analysis , Transcription, Genetic
4.
Cell ; 184(9): 2332-2347.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33761326

ABSTRACT

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.


Subject(s)
Antigens, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Cricetinae , Epitope Mapping , Genetic Variation , Models, Molecular , Mutation/genetics , Neutralization Tests , Protein Domains , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/ultrastructure
5.
Cell ; 182(4): 1027-1043.e17, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32822567

ABSTRACT

Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.


Subject(s)
Ligands , Protein Interaction Maps/physiology , Receptors, Cell Surface/metabolism , DCC Receptor/chemistry , DCC Receptor/metabolism , Humans , Phylogeny , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/classification , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Signaling Lymphocytic Activation Molecule Family/chemistry , Signaling Lymphocytic Activation Molecule Family/metabolism , Surface Plasmon Resonance
6.
Cell ; 179(1): 251-267.e24, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31539496

ABSTRACT

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.


Subject(s)
Brain Neoplasms/genetics , Disease Models, Animal , Gene Targeting/methods , Genetic Loci/genetics , Glioma/genetics , Mutagenesis, Insertional/methods , Transgenes/genetics , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/metabolism , Recombinases/metabolism , Transfection
7.
Cell ; 175(3): 639-640, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340037

ABSTRACT

Learning theorists long hypothesized that appetitive and aversive motivational states influence one another antagonistically. Here, Felsenberg et al. show that the activity of neurons in Drosophila known to be important in appetitive conditioning is necessary for the extinction of aversive conditioning, thereby uncovering biological evidence for this opponent-process.


Subject(s)
Conditioning, Psychological , Fear , Animals , Learning , Memory , Reward
8.
Annu Rev Cell Dev Biol ; 35: 683-701, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31424964

ABSTRACT

Expansion microscopy (ExM) is a physical form of magnification that increases the effective resolving power of any microscope. Here, we describe the fundamental principles of ExM, as well as how recently developed ExM variants build upon and apply those principles. We examine applications of ExM in cell and developmental biology for the study of nanoscale structures as well as ExM's potential for scalable mapping of nanoscale structures across large sample volumes. Finally, we explore how the unique anchoring and hydrogel embedding properties enable postexpansion molecular interrogation in a purified chemical environment. ExM promises to play an important role complementary to emerging live-cell imaging techniques, because of its relative ease of adoption and modification and its compatibility with tissue specimens up to at least 200 µm thick.


Subject(s)
Developmental Biology/methods , Microscopy/methods , Animals , Antibodies , Humans , Hydrogels/chemistry , Image Processing, Computer-Assisted , Luminescent Proteins , Microscopy/instrumentation , Microscopy/trends , Molecular Conformation
9.
Nat Immunol ; 21(12): 1528-1539, 2020 12.
Article in English | MEDLINE | ID: mdl-33020661

ABSTRACT

Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.


Subject(s)
Guanine Nucleotide Exchange Factors/deficiency , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Biomarkers , Caspases/metabolism , Cell Movement/genetics , Cell Movement/immunology , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Signal Transduction
10.
Nat Immunol ; 18(2): 152-160, 2017 02.
Article in English | MEDLINE | ID: mdl-27992404

ABSTRACT

Autoimmune diseases affect 7.5% of the US population, and they are among the leading causes of death and disability. A notable feature of many autoimmune diseases is their greater prevalence in females than in males, but the underlying mechanisms of this have remained unclear. Through the use of high-resolution global transcriptome analyses, we demonstrated a female-biased molecular signature associated with susceptibility to autoimmune disease and linked this to extensive sex-dependent co-expression networks. This signature was independent of biological age and sex-hormone regulation and was regulated by the transcription factor VGLL3, which also had a strong female-biased expression. On a genome-wide level, VGLL3-regulated genes had a strong association with multiple autoimmune diseases, including lupus, scleroderma and Sjögren's syndrome, and had a prominent transcriptomic overlap with inflammatory processes in cutaneous lupus. These results identified a VGLL3-regulated network as a previously unknown inflammatory pathway that promotes female-biased autoimmunity. They demonstrate the importance of studying immunological processes in females and males separately and suggest new avenues for therapeutic development.


Subject(s)
Gene Regulatory Networks , Keratinocytes/physiology , Lupus Erythematosus, Cutaneous/genetics , Scleroderma, Systemic/genetics , Sex Factors , Sjogren's Syndrome/genetics , Skin/pathology , Transcription Factors/metabolism , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Gene Expression Profiling , Genetic Association Studies , Genome-Wide Association Study , Humans , Male , Middle Aged , Quantitative Trait Loci , Transcription Factors/genetics , Transcriptome , Young Adult
11.
Nat Rev Genet ; 24(9): 627-641, 2023 09.
Article in English | MEDLINE | ID: mdl-37161088

ABSTRACT

The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA , Genome, Human , Technology
12.
Cell ; 156(1-2): 249-60, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439380

ABSTRACT

Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH's motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state.


Subject(s)
Caenorhabditis elegans/physiology , Sensory Receptor Cells/metabolism , Animals , Arousal , Calcium/metabolism , Interneurons/metabolism , Sleep
13.
Nature ; 613(7945): 667-675, 2023 01.
Article in English | MEDLINE | ID: mdl-36697864

ABSTRACT

Continuous imaging of cardiac functions is highly desirable for the assessment of long-term cardiovascular health, detection of acute cardiac dysfunction and clinical management of critically ill or surgical patients1-4. However, conventional non-invasive approaches to image the cardiac function cannot provide continuous measurements owing to device bulkiness5-11, and existing wearable cardiac devices can only capture signals on the skin12-16. Here we report a wearable ultrasonic device for continuous, real-time and direct cardiac function assessment. We introduce innovations in device design and material fabrication that improve the mechanical coupling between the device and human skin, allowing the left ventricle to be examined from different views during motion. We also develop a deep learning model that automatically extracts the left ventricular volume from the continuous image recording, yielding waveforms of key cardiac performance indices such as stroke volume, cardiac output and ejection fraction. This technology enables dynamic wearable monitoring of cardiac performance with substantially improved accuracy in various environments.


Subject(s)
Echocardiography , Equipment Design , Heart , Wearable Electronic Devices , Humans , Cardiac Output , Echocardiography/instrumentation , Echocardiography/standards , Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Stroke Volume , Wearable Electronic Devices/standards , Skin
14.
Nature ; 613(7945): 639-649, 2023 01.
Article in English | MEDLINE | ID: mdl-36697862

ABSTRACT

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Subject(s)
Biomass , DNA Contamination , Fetus , Microbiota , Animals , Female , Humans , Pregnancy , Amniotic Fluid/immunology , Amniotic Fluid/microbiology , Mammals , Microbiota/genetics , Placenta/immunology , Placenta/microbiology , Fetus/immunology , Fetus/microbiology , Reproducibility of Results
15.
Nature ; 621(7978): 344-354, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612512

ABSTRACT

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.


Subject(s)
Chromosomes, Human, Y , Genomics , Sequence Analysis, DNA , Humans , Base Sequence , Chromosomes, Human, Y/genetics , DNA, Satellite/genetics , Genetic Variation/genetics , Genetics, Population , Genomics/methods , Genomics/standards , Heterochromatin/genetics , Multigene Family/genetics , Reference Standards , Segmental Duplications, Genomic/genetics , Sequence Analysis, DNA/standards , Tandem Repeat Sequences/genetics , Telomere/genetics
16.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315031

ABSTRACT

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Subject(s)
Fibrosis/prevention & control , GATA6 Transcription Factor/metabolism , Heart/physiology , Macrophages/immunology , Myocardial Infarction/immunology , Myocardium/pathology , Pericardium/immunology , Animals , Cell Movement , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ventricular Remodeling
17.
Nature ; 601(7893): 404-409, 2022 01.
Article in English | MEDLINE | ID: mdl-34912118

ABSTRACT

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.


Subject(s)
Brain , Cell Lineage , GABAergic Neurons , Neural Stem Cells , Neurogenesis , Animals , Brain/cytology , Cell Differentiation , Embryonic Development , GABAergic Neurons/cytology , Mice , Mitosis , Neural Stem Cells/cytology , Neurogenesis/genetics , Transcriptome
18.
Mol Cell ; 79(2): 207-220.e8, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32544389

ABSTRACT

RNA polymerase II (RNA Pol II) contains a disordered C-terminal domain (CTD) whose length enigmatically correlates with genome size. The CTD is crucial to eukaryotic transcription, yet the functional and evolutionary relevance of this variation remains unclear. Here, we investigate how CTD length and disorder influence transcription. We find that length modulates the size and frequency of transcriptional bursting. Disorder is highly conserved and facilitates CTD-CTD interactions, an ability we show is separable from protein sequence and necessary for efficient transcription. We build a data-driven quantitative model, simulations of which recapitulate experiments and support that CTD length promotes initial polymerase recruitment to the promoter and slows down its release from it and that CTD-CTD interactions enable recruitment of multiple polymerases. Our results reveal how these parameters provide access to a range of transcriptional activity, offering a new perspective for the mechanistic significance of CTD length and disorder in transcription across eukaryotes.


Subject(s)
Catalytic Domain , RNA Polymerase II/metabolism , Saccharomycetales/enzymology , Saccharomycetales/genetics , Transcription, Genetic , Amino Acid Sequence , Models, Genetic , RNA Polymerase II/chemistry , RNA-Seq , Structure-Activity Relationship , Transcriptome
19.
Annu Rev Pharmacol Toxicol ; 64: 115-134, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37788492

ABSTRACT

Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.


Subject(s)
Anthracyclines , Induced Pluripotent Stem Cells , Humans , Anthracyclines/adverse effects , Cardiotoxicity/etiology , Myocytes, Cardiac , Biomarkers
20.
Nat Rev Neurosci ; 23(3): 173-186, 2022 03.
Article in English | MEDLINE | ID: mdl-35027710

ABSTRACT

One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.


Subject(s)
Cell Plasticity , Mental Recall , Adaptation, Physiological , Humans , Mental Recall/physiology , Neuronal Plasticity/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL