Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Food Technol Biotechnol ; 55(3): 381-389, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29089851

ABSTRACT

In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidification and proteolytic activity. Strain no. C8, identified as Lactobacillus plantarum C8, was selected and used as starter to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 µg per kg of dough respectively), and antioxidant activities, which increased by approx. 33-40% compared to unfermented chia flour dough. In addition, total phenolic content increased 25% and its composition was strongly modified after 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g), while ferulic acid was detected from the beginning of fermentation, being 32% higher in chia sourdough (5.6 mg/g). The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb) and antioxidant properties (25% on average), compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the first time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics.

2.
Biosensors (Basel) ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38920582

ABSTRACT

Glucosamine-chitosan synthesized by the Maillard reaction was combined with montmorillonite to obtain a nanohybrid composite to immobilize horseradish peroxidase. The material combines the advantageous properties of clay with those of the chitosan derivative; has improved water solubility and reduced molecular weight and viscosity; involves an eco-friendly synthesis; and exhibits ion exchange capacity, good adhesiveness, and a large specific surface area for enzyme adsorption. The physicochemical characteristics of the composite were analyzed by infrared spectroscopy and X-ray diffraction to determine clay-polycation interactions. The electrochemical response of the different polyphenols to glassy carbon electrodes modified with the composite was evaluated by cyclic voltammetry. The sensitivity and detection limit values obtained with the biosensor toward hydroquinone, chlorogenic acid, catechol, and resorcinol are (1.6 ± 0.2) × 102 µA mM-1 and (74 ± 8) nM; (1.2 ± 0.1) × 102 µA mM-1 and (26 ± 3) nM; (16 ± 2) µA mM-1 and (0.74 ± 0.09) µM; and (3.7± 0.3) µA mM-1 and (3.3 ± 0.2) µM, respectively. The biosensor was applied to quantify polyphenols in pennyroyal and lemon verbena extracts.


Subject(s)
Bentonite , Biosensing Techniques , Chitosan , Electrochemical Techniques , Enzymes, Immobilized , Glucosamine , Horseradish Peroxidase , Polyphenols , Bentonite/chemistry , Polyphenols/analysis , Chitosan/chemistry , Horseradish Peroxidase/chemistry , Enzymes, Immobilized/chemistry , Glucosamine/analysis , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL