Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Magn Reson Chem ; 59(3): 315-323, 2021 03.
Article in English | MEDLINE | ID: mdl-32516838

ABSTRACT

Nonuniform sampling (NUS) of multidimensional NMR experiments is a powerful tool to obtain high-resolution spectra with less instrument time. With NUS, only a subset of the points needed for conventional Fourier transformation is recorded, and sophisticated algorithms are needed to reconstruct the missing data points. During the last decade, several software packages implementing the reconstruction algorithms have emerged and been refined and now result in spectra of almost similar quality as spectra from conventionally recorded and processed data. However, from the number of literature references to the reconstruction methods, many more multidimensional NMR spectra could presumably be recorded with NUS. To help researchers considering to start using NUS for their NMR experiments, we here review 13 different reconstruction methods found in five software packages (CambridgeCS, hmsIST, MddNMR, NESTA-NMR, and SMILE). We have compared how the methods run with the provided example scripts for reconstructing a nonuniform sampled three-dimensional 15 N-NOESY-HSQC at sampling densities from 5% to 50%. Overall, the spectra are all of similar quality above 20% sampling density. Thus, without any particular knowledge about the details of the reconstruction algorithms, significant reduction in the experiment time can be achieved. Below 20% sampling density, the intensities of particular weak peaks start being affected. MddNMR's IST with virtual echo and the SMILE algorithms still reproduced the spectra with the highest accuracy of peak intensities.

2.
iScience ; 25(2): 103808, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198873

ABSTRACT

The organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional postsynapse. The PSD protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the Stargazin (TARP-γ2)-mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate the formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions, while in other cases short, highly charged peptides are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.

3.
Methods Mol Biol ; 2141: 195-209, 2020.
Article in English | MEDLINE | ID: mdl-32696358

ABSTRACT

Intrinsically disordered proteins (IDPs) have no single, fixed tertiary structure, yet they take on many vital functions in biology. In recent years, considerable effort has been put into the structural characterization of their conformational ensembles, to understand the link between the transient, short- and long-range organizations of IDPs and their functions. Such biophysical studies require substantial amounts of pure protein, representing a major bottleneck in the studies of IDPs. However, the unique physicochemical properties resulting from their compositional bias may be exploited for simple yet effective purification strategies. In this chapter, we provide tips and tricks for IDP production and describe the most important analyses to carry out before bringing an IDP of interest to the laboratory. We outline four purification protocols utilizing the unique properties of IDPs as well as some commonly encountered challenges and pitfalls.


Subject(s)
Biophysics/methods , Intrinsically Disordered Proteins/biosynthesis , Chemical Precipitation , Chromatography, Reverse-Phase , Hot Temperature , Intrinsically Disordered Proteins/isolation & purification , Isoelectric Point , Protein Denaturation
4.
Structure ; 27(7): 1071-1081.e5, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31080121

ABSTRACT

The activity-regulated cytoskeleton-associated protein, Arc, is highly expressed in neuronal dendrites and is involved in synaptic scaling and plasticity. Arc exhibits homology to the capsid-forming Gag proteins from retroviruses and can encapsulate its own mRNA and transport it to neighboring neurons. However, the molecular events that lead to the assembly of Arc capsids and how the capsid formation is regulated are not known. Here we show that the capsid domain of Arc may transiently form homogeneous oligomers of similar size as capsids formed by full-length Arc. We determined a high-resolution structure of the monomeric Arc capsid domain and mapped the initial structural change in the oligomerization process to the N-terminal part of the capsid domain. Peptide ligands from the NMDA receptor subunits inhibit oligomerization, which suggests that Arc's ability to transfer mRNA between cells may be regulated by protein-protein interactions at the synapse.


Subject(s)
Capsid Proteins/chemistry , Cytoskeletal Proteins/chemistry , Nerve Tissue Proteins/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Amino Acid Sequence , Animals , Binding Sites , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/chemistry , Neurons/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Rats , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL