Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cell ; 165(2): 421-33, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26949185

ABSTRACT

The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization (MOMP). The BCL-2 family effectors BAX and BAK are thought to be absolutely required for this process. Here, we report that BCL-2 ovarian killer (BOK) is a bona fide yet unconventional effector of MOMP that can trigger apoptosis in the absence of both BAX and BAK. However, unlike the canonical effectors, BOK appears to be constitutively active and unresponsive to antagonistic effects of the antiapoptotic BCL-2 proteins. Rather, BOK is controlled at the level of protein stability by components of the endoplasmic reticulum (ER)-associated degradation pathway. BOK is ubiquitylated by the AMFR/gp78 E3 ubiquitin ligase complex and targeted for proteasomal degradation in a VCP/p97-dependent manner, which allows survival of the cell. When proteasome function, VCP, or gp78 activity is compromised, BOK is stabilized to induce MOMP and apoptosis independently of other BCL-2 proteins.


Subject(s)
Apoptosis , Endoplasmic Reticulum-Associated Degradation , Mitochondrial Membranes/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Humans , Mice , Permeability , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
2.
Immunity ; 52(6): 994-1006.e8, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32428502

ABSTRACT

Cell death pathways regulate various homeostatic processes. Autoimmune lymphoproliferative syndrome (ALPS) in humans and lymphoproliferative (LPR) disease in mice result from abrogated CD95-induced apoptosis. Because caspase-8 mediates CD95 signaling, we applied genetic approaches to dissect the roles of caspase-8 in cell death and inflammation. Here, we describe oligomerization-deficient Caspase-8F122GL123G/F122GL123G and non-cleavable Caspase-8D387A/D387A mutant mice with defective caspase-8-mediated apoptosis. Although neither mouse developed LPR disease, removal of the necroptosis effector Mlkl from Caspase-8D387A/D387A mice revealed an inflammatory role of caspase-8. Ablation of one allele of Fasl, Fadd, or Ripk1 prevented the pathology of Casp8D387A/D387AMlkl-/- animals. Removing both Fadd alleles from these mice resulted in early lethality prior to post-natal day 15 (P15), which was prevented by co-ablation of either Ripk1 or Caspase-1. Our results suggest an in vivo role of the inflammatory RIPK1-caspase-8-FADD (FADDosome) complex and reveal a FADD-independent inflammatory role of caspase-8 that involves activation of an inflammasome.


Subject(s)
Caspase 8/genetics , Disease Susceptibility , Fas-Associated Death Domain Protein/metabolism , Inflammation/etiology , Inflammation/metabolism , Necroptosis/genetics , Animals , Apoptosis/genetics , Biomarkers , Caspase 8/chemistry , Caspase 8/metabolism , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Gene Expression Regulation , Inflammasomes/metabolism , Inflammation/mortality , Inflammation/pathology , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Mortality , Phenotype , Protein Multimerization
3.
Immunity ; 51(6): 1012-1027.e7, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31668641

ABSTRACT

Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells.


Subject(s)
Arginine/metabolism , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Cell Cycle , Cell Differentiation/physiology , Cell Line , Humans , Immune Tolerance/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monomeric GTP-Binding Proteins/genetics , Ras Homolog Enriched in Brain Protein/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/cytology
4.
J Cell Sci ; 136(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37305998

ABSTRACT

Besides assembling nuclear pore complexes, the conduits of nuclear transport, many nucleoporins also contribute to chromatin organization and gene expression, with critical roles in development and pathologies. We previously reported that Nup133 and Seh1, two components of the Y-complex subassembly of the nuclear pore scaffold, are dispensable for mouse embryonic stem cell viability but required for their survival during neuroectodermal differentiation. Here, a transcriptomic analysis revealed that Nup133 regulates a subset of genes at early stages of neuroectodermal differentiation, including Lhx1 and Nup210l, which encodes a newly validated nucleoporin. These genes are also misregulated in Nup133ΔMid neuronal progenitors, in which nuclear pore basket assembly is impaired. However, a four-fold reduction of Nup133 levels, despite also affecting basket assembly, is not sufficient to alter Nup210l and Lhx1 expression. Finally, these two genes are also misregulated in Seh1-deficient neural progenitors, which only show a mild reduction in nuclear pore density. Together these data reveal a shared function of Y-complex nucleoporins in gene regulation during neuroectodermal differentiation, apparently independent of nuclear pore basket integrity.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Mice , Nuclear Pore Complex Proteins/genetics , Nuclear Pore/genetics , Gene Expression Regulation , Gene Expression Profiling , Mouse Embryonic Stem Cells
5.
Nature ; 573(7775): 590-594, 2019 09.
Article in English | MEDLINE | ID: mdl-31511697

ABSTRACT

The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1ß and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.


Subject(s)
Cell Death/genetics , DEAD-box RNA Helicases/metabolism , Inflammasomes/genetics , Macrophages/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stress, Physiological/genetics , Animals , Cell Line , Cell Survival/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , HEK293 Cells , Humans , Inflammasomes/immunology , Macrophages/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
6.
Proc Natl Acad Sci U S A ; 119(41): e2207240119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191211

ABSTRACT

The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.


Subject(s)
Necroptosis , Nucleic Acids , Animals , Apoptosis/physiology , Caspase 8/genetics , Caspase 8/metabolism , DNA-Binding Proteins/metabolism , Fas-Associated Death Domain Protein/genetics , Interferons/metabolism , Mice , Nucleotidyltransferases/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
7.
Immunity ; 42(1): 18-27, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25607456

ABSTRACT

Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas9) technology has proven a formidable addition to our armory of approaches for genomic editing. Derived from pathways in archaea and bacteria that mediate the resistance to exogenous genomic material, the CRISPR-Cas9 system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 to virtually anywhere in the genome. Upon targeting, Cas9 generates DNA double-strand breaks (DSBs) and facilitates the repair or insertion of mutations, insertion of recombinase recognition sites, or large DNA elements. Here, we discuss the practical advantages of the CRISPR-Cas9 system over conventional and other nuclease-based targeting technologies and provide suggestions for the use of this technology to address immunological questions.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Genome , Immunity/genetics , Animals , DNA Repair , Endonucleases/metabolism , Genome/genetics , Humans , Mice , RNA, Guide, Kinetoplastida/genetics
8.
Nature ; 540(7634): 583-587, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-27951586

ABSTRACT

NLRs (nucleotide-binding domain and leucine-rich repeats) belong to a large family of cytoplasmic sensors that regulate an extraordinarily diverse range of biological functions. One of these functions is to contribute to immunity against infectious diseases, but dysregulation of their functional activity leads to the development of inflammatory and autoimmune diseases. Cytoplasmic innate immune sensors, including NLRs, are central regulators of intestinal homeostasis. NLRC3 (also known as CLR16.2 or NOD3) is a poorly characterized member of the NLR family and was identified in a genomic screen for genes encoding proteins bearing leucine-rich repeats (LRRs) and nucleotide-binding domains. Expression of NLRC3 is drastically reduced in the tumour tissue of patients with colorectal cancer compared to healthy tissues, highlighting an undefined potential function for this sensor in the development of cancer. Here we show that mice lacking NLRC3 are hyper-susceptible to colitis and colorectal tumorigenesis. The effect of NLRC3 is most dominant in enterocytes, in which it suppresses activation of the mTOR signalling pathways and inhibits cellular proliferation and stem-cell-derived organoid formation. NLRC3 associates with PI3Ks and blocks activation of the PI3K-dependent kinase AKT following binding of growth factor receptors or Toll-like receptor 4. These findings reveal a key role for NLRC3 as an inhibitor of the mTOR pathways, mediating protection against colorectal cancer.

9.
Am J Med Genet A ; 185(4): 1091-1097, 2021 04.
Article in English | MEDLINE | ID: mdl-33442927

ABSTRACT

SCYL1 disease results from biallelic pathogenic variants in SCYL1. We report two new patients with severe hepatic phenotype requiring liver transplantation. Patient charts reviewed. DNA samples and skin fibroblasts were utilized. Literature was reviewed. 13-year-old boy and 9-year-old girl siblings had acute liver insufficiency and underwent living related donor liver transplantation in infancy with no genetic diagnosis. Both had tremor, global developmental delay, and cognitive dysfunction during their follow-up in the medical genetic clinic for diagnostic investigations after their liver transplantation. Exome sequencing identified a likely pathogenic variant (c.399delC; p.Asn133Lysfs*136) in SCYL1. Deletion/duplication analysis of SCYL1 identified deletions of exons 7-8 in Patient 1. Both variants were confirmed in Patient 2 and the diagnosis of SCYL1 disease was confirmed in both patients at the age of 13 and 9 years, respectively. SCYL1 protein was not expressed in both patients' fibroblast using western blot analysis. Sixteen patients with SCYL1 disease reported in the literature. Liver phenotype (n = 16), neurological phenotype (n = 13) and skeletal phenotype (n = 11) were present. Both siblings required liver transplantation in infancy and had variable phenotypes. Exome sequencing may miss the diagnosis and phenotyping of patients can help to diagnose patients.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Genetic Predisposition to Disease , Nervous System Malformations/genetics , Adaptor Proteins, Vesicular Transport/deficiency , Adolescent , Child , DNA-Binding Proteins/deficiency , Developmental Disabilities/diagnosis , Developmental Disabilities/therapy , Female , Humans , Liver/pathology , Liver/surgery , Liver Transplantation , Living Donors , Male , Nervous System Malformations/diagnosis , Nervous System Malformations/pathology , Nervous System Malformations/therapy , Siblings , Exome Sequencing
10.
PLoS Pathog ; 14(3): e1006950, 2018 03.
Article in English | MEDLINE | ID: mdl-29554134

ABSTRACT

Expression from the HIV-1 LTR can be repressed in a small population of cells, which contributes to the latent reservoir. The factors mediating this repression have not been clearly elucidated. We have identified a network of nuclear RNA surveillance factors that act as effectors of HIV-1 silencing. RRP6, MTR4, ZCCHC8 and ZFC3H1 physically associate with the HIV-1 TAR region and repress transcriptional output and recruitment of RNAPII to the LTR. Knock-down of these factors in J-Lat cells increased the number of GFP-positive cells, with a concomitant increase in histone marks associated with transcriptional activation. Loss of these factors increased HIV-1 expression from infected PBMCs and led to reactivation of HIV-1 from latently infected PBMCs. These findings identify a network of novel transcriptional repressors that control HIV-1 expression and which could open new avenues for therapeutic intervention.


Subject(s)
HIV Infections/virology , HIV Long Terminal Repeat/genetics , HIV-1/genetics , Nuclear Proteins/metabolism , RNA, Nuclear/metabolism , Repressor Proteins/metabolism , Virus Activation , Carrier Proteins/genetics , Carrier Proteins/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression Regulation, Viral , HIV Infections/genetics , HIV Infections/metabolism , HIV-1/pathogenicity , HeLa Cells , Humans , Nuclear Proteins/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Nuclear/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation , Virus Latency
11.
J Neurosci ; 38(10): 2615-2630, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29437892

ABSTRACT

Members of the SCY1-like (SCYL) family of protein kinases are evolutionarily conserved and ubiquitously expressed proteins characterized by an N-terminal pseudokinase domain, centrally located Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats, and an overall disorganized C-terminal segment. In mammals, three family members encoded by genes Scyl1, Scyl2, and Scyl3 have been described. Studies have pointed to a role for SCYL1 and SCYL2 in regulating neuronal function and viability in mice and humans, but little is known about the biological function of SCYL3. Here, we show that the biochemical and cell biological properties of SCYL3 are similar to those of SCYL1 and both proteins work in conjunction to maintain motor neuron viability. Specifically, although lack of Scyl3 in mice has no apparent effect on embryogenesis and postnatal life, it accelerates the onset of the motor neuron disorder caused by Scyl1 deficiency. Growth abnormalities, motor dysfunction, hindlimb paralysis, muscle wasting, neurogenic atrophy, motor neuron degeneration, and loss of large-caliber axons in peripheral nerves occurred at an earlier age in Scyl1/Scyl3 double-deficient mice than in Scyl1-deficient mice. Disease onset also correlated with the mislocalization of TDP-43 in spinal motor neurons, suggesting that SCYL1 and SCYL3 regulate TDP-43 proteostasis. Together, our results demonstrate an overlapping role for SCYL1 and SCYL3 in vivo and highlight the importance the SCYL family of proteins in regulating neuronal function and survival. Only male mice were used in this study.SIGNIFICANCE STATEMENT SCYL1 and SCYL2, members of the SCY1-like family of pseudokinases, have well established roles in neuronal function. Herein, we uncover the role of SCYL3 in maintaining motor neuron viability. Although targeted disruption of Scyl3 in mice had little or no effect on embryonic development and postnatal life, it accelerated disease onset associated with the loss of Scyl1, a novel motor neuron disease gene in humans. Scyl1 and Scyl3 double-deficient mice had neuronal defects characteristic of amyotrophic lateral sclerosis, including TDP-43 pathology, at an earlier age than did Scyl1-deficient mice. Thus, we show that SCYL1 and SCYL3 play overlapping roles in maintaining motor neuronal viability in vivo and confirm that SCYL family members are critical regulators of neuronal function and survival.


Subject(s)
Cell Survival/genetics , Cell Survival/physiology , Membrane Proteins/physiology , Motor Neurons/physiology , Nerve Tissue Proteins/physiology , Protein Kinases/genetics , Adaptor Proteins, Vesicular Transport , Animals , Atrophy , Axons/pathology , Caspases/metabolism , DNA-Binding Proteins/genetics , Fibroblasts/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Movement Disorders/genetics , Movement Disorders/pathology , Muscle, Skeletal/pathology , Nerve Degeneration/genetics , Nerve Tissue Proteins/genetics , Paralysis/genetics , Paralysis/pathology
12.
Cell Immunol ; 346: 103996, 2019 12.
Article in English | MEDLINE | ID: mdl-31703914

ABSTRACT

Sex hormones are best known for their influences on reproduction, but they also have profound influences on the immune response. Examples of sex-specific differences include: (i) the relatively poor control of influenza virus infections in males compared to females, (ii) allergic asthma, an IgE-associated hypersensitivity reaction that is exacerbated in adolescent females compared to males, and (iii) systemic lupus erythematosus, a life-threatening autoimmune disease with a 9:1 female:male bias. Here we consider how estrogen and estrogen receptor α (ERα) may influence the immune response by modifying class switch recombination (CSR) and immunoglobulin expression patterns. We focus on ERα binding to enhancers (Eµ and the 3' regulatory region) and switch sites (Sµ and Sε) in the immunoglobulin heavy chain locus. Our preliminary data from ChIP-seq analyses of purified, activated B cells show estrogen-mediated changes in the positioning of ERα binding within and near Sµ and Sε. In the presence of estrogen, ERα is bound not only to estrogen response elements (ERE), but also to adenosine-cytidine (AC)-repeats and poly adenosine (poly A) sequences, in some cases within constant region gene introns. We propose that by binding these sites, estrogen and ERα directly participate in the DNA loop formation required for CSR. We further suggest that estrogen regulates immunoglobulin expression patterns and can thereby influence life-and-death outcomes of infection, hypersensitivity, and autoimmune disease.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Immunoglobulin Class Switching/immunology , Autoimmune Diseases/immunology , Female , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Male , Poly A/genetics , Response Elements/genetics
13.
Proc Natl Acad Sci U S A ; 113(41): E6162-E6171, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27671649

ABSTRACT

Psoriasis is a chronic inflammatory skin disease with a clear genetic contribution, characterized by keratinocyte proliferation and immune cell infiltration. Various closely interacting cell types, including innate immune cells, T cells, and keratinocytes, are known to contribute to inflammation. Innate immune cells most likely initiate the inflammatory process by secretion of IL-23. IL-23 mediates expansion of T helper 17 (Th17) cells, whose effector functions, including IL-17A, activate keratinocytes. Keratinocyte activation in turn results in cell proliferation and chemokine expression, the latter of which fuels the inflammatory process through further immune cell recruitment. One question that remains largely unanswered is how genetic susceptibility contributes to this process and, specifically, which cell type causes disease due to psoriasis-specific genetic alterations. Here we describe a mouse model based on the human psoriasis susceptibility locus TNIP1, also referred to as ABIN1, whose gene product is a negative regulator of various inflammatory signaling pathways, including the Toll-like receptor pathway in innate immune cells. We find that Tnip1-deficient mice recapitulate major features of psoriasis on pathological, genomic, and therapeutic levels. Different genetic approaches, including tissue-specific gene deletion and the use of various inflammatory triggers, reveal that Tnip1 controls not only immune cells, but also keratinocyte biology. Loss of Tnip1 in keratinocytes leads to deregulation of IL-17-induced gene expression and exaggerated chemokine production in vitro and overt psoriasis-like inflammation in vivo. Together, the data establish Tnip1 as a critical regulator of IL-17 biology and reveal a causal role of keratinocytes in the pathogenesis of psoriasis.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Susceptibility , Keratinocytes/metabolism , Psoriasis/etiology , Psoriasis/metabolism , Aminoquinolines/adverse effects , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Imiquimod , Interleukin-17/metabolism , Interleukin-23/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Mice , Mice, Knockout , Psoriasis/pathology , Transcriptome
14.
J Neurosci ; 35(29): 10510-22, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26203146

ABSTRACT

Neuronal death caused by excessive excitatory signaling, excitotoxicity, plays a central role in neurodegenerative disorders. The mechanisms regulating this process, however, are still incompletely understood. Here we show that the coated vesicle-associated kinase SCYL2/CVAK104 plays a critical role for the normal functioning of the nervous system and for suppressing excitotoxicity in the developing hippocampus. Targeted disruption of Scyl2 in mice caused perinatal lethality in the vast majority of newborn mice and severe sensory-motor deficits in mice that survived to adulthood. Consistent with a neurogenic origin of these phenotypes, neuron-specific deletion of Scyl2 also caused perinatal lethality in the majority of newborn mice and severe neurological defects in adult mice. The neurological deficits in these mice were associated with the degeneration of several neuronal populations, most notably CA3 pyramidal neurons of the hippocampus, which we analyzed in more detail. The loss of CA3 neurons occurred during the functional maturation of the hippocampus and was the result of a BAX-dependent apoptotic process. Excessive excitatory signaling was present at the onset of degeneration, and inhibition of excitatory signaling prevented the degeneration of CA3 neurons. Biochemical fractionation reveals that Scyl2-deficient mice have an altered composition of excitatory receptors at synapses. Our findings demonstrate an essential role for SCYL2 in regulating neuronal function and survival and suggest a role for SCYL2 in regulating excitatory signaling in the developing brain. Significance statement: Here we examine the in vivo function of SCYL2, an evolutionarily conserved and ubiquitously expressed protein pseudokinase thought to regulate protein trafficking along the secretory pathway, and demonstrate its importance for the normal functioning of the nervous system and for suppressing excitatory signaling in the developing brain. Together with recent studies demonstrating a role of SCYL1 in preventing motor neuron degeneration, our findings clearly establish the SCY1-like family of protein pseudokinases as key regulators of neuronal function and survival.


Subject(s)
CA3 Region, Hippocampal/enzymology , Nerve Degeneration/enzymology , Neurogenesis/physiology , Protein Serine-Threonine Kinases/metabolism , Pyramidal Cells/enzymology , Animals , Blotting, Western , Cell Death/physiology , Chromatography, Liquid , Electrophysiology , Excitatory Postsynaptic Potentials/physiology , Fluorescent Antibody Technique , Immunohistochemistry , Immunoprecipitation , In Situ Nick-End Labeling , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
15.
Cell Rep ; 43(6): 114335, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850531

ABSTRACT

Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.


Subject(s)
Caspase 8 , Fas-Associated Death Domain Protein , Inflammation , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Fas-Associated Death Domain Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Mice , Caspase 8/metabolism , Protein Kinases/metabolism , Apoptosis , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Necroptosis , Protein Binding , Mice, Inbred C57BL
16.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38467404

ABSTRACT

The mitochondrial contact site and cristae organizing system (MICOS) is important for crista junction formation and for maintaining inner mitochondrial membrane architecture. A key component of the MICOS complex is MIC60, which has been well studied in yeast and cell culture models. However, only one recent study has demonstrated the embryonic lethality of losing Immt (the gene encoding MIC60) expression. Tamoxifen-inducible ROSA-CreERT2-mediated deletion of Immt in adult mice disrupted the MICOS complex, increased mitochondria size, altered cristae morphology, and was lethal within 12 d. Pathologically, these mice displayed defective intestinal muscle function (paralytic ileus) culminating in dehydration. We also identified bone marrow (BM) hypocellularity in Immt-deleted mice, although BM transplants from wild-type mice did not improve survival. Altogether, this inducible mouse model demonstrates the importance of MIC60 in vivo, in both hematopoietic and non-hematopoietic tissues, and provides a valuable resource for future mechanistic investigations into the MICOS complex.


Subject(s)
Mitochondria Associated Membranes , Mitochondrial Proteins , Animals , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism
17.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699440

ABSTRACT

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

18.
J Neurosci ; 32(47): 16560-73, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23175812

ABSTRACT

The molecular and cellular bases of motor neuron diseases (MNDs) are still poorly understood. The diseases are mostly sporadic, with ~10% of cases being familial. In most cases of familial motor neuronopathy, the disease is caused by either gain-of-adverse-effect mutations or partial loss-of-function mutations in ubiquitously expressed genes that serve essential cellular functions. Here we show that deletion of Scyl1, an evolutionarily conserved and ubiquitously expressed gene encoding the COPI-associated protein pseudokinase SCYL1, causes an early onset progressive MND with characteristic features of amyotrophic lateral sclerosis (ALS). Skeletal muscles of Scyl1(-/-) mice displayed neurogenic atrophy, fiber type switching, and disuse atrophy. Peripheral nerves showed axonal degeneration. Loss of lower motor neurons (LMNs) and large-caliber axons was conspicuous in Scyl1(-/-) animals. Signs of neuroinflammation were seen throughout the CNS, most notably in the ventral horn of the spinal cord. Neural-specific, but not skeletal muscle-specific, deletion of Scyl1 was sufficient to cause motor dysfunction, indicating that SCYL1 acts in a neural cell-autonomous manner to prevent LMN degeneration and motor functions. Remarkably, deletion of Scyl1 resulted in the mislocalization and accumulation of TDP-43 (TAR DNA-binding protein of 43 kDa) and ubiquilin 2 into cytoplasmic inclusions within LMNs, features characteristic of most familial and sporadic forms of ALS. Together, our results identify SCYL1 as a key regulator of motor neuron survival, and Scyl1(-/-) mice share pathological features with many human neurodegenerative conditions.


Subject(s)
DNA-Binding Proteins/metabolism , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Protein Kinases/genetics , Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagy-Related Proteins , Blotting, Western , Clone Cells/physiology , DNA/genetics , Hand Strength/physiology , Immunohistochemistry , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Molecular Sequence Data , Motor Neuron Disease/pathology , Motor Neurons/physiology , Motor Neurons/ultrastructure , Muscle, Skeletal/pathology , Polymerase Chain Reaction
19.
STAR Protoc ; 4(1): 102116, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853660

ABSTRACT

In this protocol, we describe the generation of conditional alleles in mice using the DECAI (DEgradation based on Cre-regulated Artificial Intron) approach. We detail steps for the CRISPR-mediated insertion of the short DECAI cassette within exon 3 of Scyl1 and the functional validation of alleles at genomic, transcriptomic, and protein levels. This strategy simplifies the process of generating mice with conditional alleles. For complete details on the use and execution of this protocol, please refer to Cassidy et al. (2022).1.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Alleles , Introns/genetics , Exons/genetics
20.
Bone ; 167: 116612, 2023 02.
Article in English | MEDLINE | ID: mdl-36379415

ABSTRACT

Genetically modified mouse models have shaped our understanding of biological systems in both physiological and pathological conditions. For decades, mouse genome engineering has relied on transgenesis and spontaneous gene replacement in embryonic stem (ES) cells. While these technologies provided a wealth of knowledge, they remain imprecise and expensive to use. Recent advances in genome editing technologies such as the development of targetable nucleases, the improvement of delivery systems, and the simplification of targeting strategies now allow for the rapid, precise manipulation of the mouse genome. In this review article, we discuss novel methods and targeting strategies for the generation of mouse models for the study of bone and skeletal muscle biology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , Animals, Genetically Modified , Genetic Therapy , Genetic Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL