Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 699
Filter
1.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474362

ABSTRACT

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Subject(s)
Endothelial Cells/metabolism , Hepatocytes/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Liver Cirrhosis/metabolism , Liver/metabolism , Receptors, TIE/metabolism , Animals , Biomarkers/metabolism , Capillaries/metabolism , Endothelial Cells/cytology , Endothelial Cells/pathology , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Intercellular Signaling Peptides and Proteins/blood , Liver/blood supply , Liver/pathology , Liver Cirrhosis/diagnosis , Mice, Inbred C57BL
2.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667382

ABSTRACT

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Subject(s)
Aging/immunology , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Cytoplasm/immunology , DNA-Activated Protein Kinase/immunology , DNA/immunology , Inflammation/immunology , Animals , Cell Line , Cell Line, Tumor , Cell Nucleus/immunology , Cell Proliferation/physiology , DNA Repair/immunology , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , U937 Cells
3.
Mol Cell ; 82(20): 3810-3825.e8, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36108631

ABSTRACT

Human mixed-lineage leukemia (MLL) family methyltransferases methylate histone H3 lysine 4 to different methylation states (me1/me2/me3) with distinct functional outputs, but the mechanism underlying the different product specificities of MLL proteins remains unclear. Here, we develop methodologies to quantitatively measure the methylation rate difference between mono-, di-, and tri-methylation steps and demonstrate that MLL proteins possess distinct product specificities in the context of the minimum MLL-RBBP5-ASH2L complex. Comparative structural analyses of MLL complexes by X-ray crystal structures, fluorine-19 nuclear magnetic resonance, and molecular dynamics simulations reveal that the dynamics of two conserved tyrosine residues at the "F/Y (phenylalanine/tyrosine) switch" positions fine-tune the product specificity. The variation in the intramolecular interaction between SET-N and SET-C affects the F/Y switch dynamics, thus determining the product specificities of MLL proteins. These results indicate a modified F/Y switch rule applicable for most SET domain methyltransferases and implicate the functional divergence of MLL proteins.


Subject(s)
Histone-Lysine N-Methyltransferase , Leukemia , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Lysine/metabolism , Fluorine/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Tyrosine , Phenylalanine
4.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32277911

ABSTRACT

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Subject(s)
Fibroblasts/immunology , Interferons/immunology , Membrane Proteins/immunology , Nucleotides, Cyclic/immunology , Voltage-Dependent Anion Channels/immunology , Animals , Antiviral Agents/immunology , Antiviral Agents/metabolism , Bystander Effect , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Humans , Interferons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Nucleotidyltransferases/metabolism , Voltage-Dependent Anion Channels/metabolism
5.
Nature ; 591(7849): 288-292, 2021 03.
Article in English | MEDLINE | ID: mdl-33658715

ABSTRACT

The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Nucleus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Development , Receptors, Cell Surface/metabolism , Signal Transduction , Arabidopsis/cytology , Arabidopsis/genetics , Catalytic Domain , DNA-Binding Proteins/metabolism , Ethylenes/metabolism , Glucose/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Meristem/metabolism , Phosphorylation , Plant Growth Regulators/metabolism , Protein Kinases/metabolism , Substrate Specificity , Transcription Factors/metabolism , Transcriptome
6.
Nat Chem Biol ; 20(2): 201-210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012344

ABSTRACT

Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.


Subject(s)
Bacteria , Metabolic Engineering , Workflow , Lycopene , Biopolymers
7.
Nature ; 580(7804): 467-471, 2020 04.
Article in English | MEDLINE | ID: mdl-32322076

ABSTRACT

Unidirectional radiation is important for various optoelectronic applications, such as lasers, grating couplers and optical antennas. However, almost all existing unidirectional emitters rely on the use of materials or structures that forbid outgoing waves-that is, mirrors, which are often bulky, lossy and difficult to fabricate. Here we theoretically propose and experimentally demonstrate a class of resonances in photonic crystal slabs that radiate only towards one side of the slab, with no mirror placed on the other side. These resonances, which we name 'unidirectional guided resonances', are found to be topological in nature: they emerge when a pair of half-integer topological charges1-3 in the polarization field bounce into each other in momentum space. We experimentally demonstrate unidirectional guided resonances in the telecommunication regime by achieving single-side radiative quality factors as high as 1.6 × 105. We further demonstrate their topological nature through far-field polarimetry measurements. Our work represents a characteristic example of applying topological principles4,5 to control optical fields and could lead to energy-efficient grating couplers and antennas for light detection and ranging.

8.
Nature ; 582(7811): 289-293, 2020 06.
Article in English | MEDLINE | ID: mdl-32272481

ABSTRACT

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 µM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Drug Discovery/methods , Models, Molecular , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cells, Cultured/virology , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Drug Design , Drug Evaluation, Preclinical , Humans , Pandemics , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , SARS-CoV-2
9.
Mol Cell ; 72(2): 303-315.e6, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340022

ABSTRACT

mTORC1, the major homeostatic sensor and responder, regulates cell catabolism mainly by targeting autophagy. Here, we show that mTORC1 directly controls autophagosome formation via phosphorylation of WIPI2, a critical protein in isolation membrane growth and elongation. mTORC1 phosphorylates Ser395 of WIPI2, directing WIPI2 to interact specifically with the E3 ubiquitin ligase HUWE1 for ubiquitination and proteasomal degradation. Physiological or pharmacological inhibition of mTORC1 in cells promotes WIPI2 stabilization, autophagosome formation, and autophagic degradation. In mouse liver, fasting significantly increases the WIPI2 protein level, while silencing HUWE1 enhances autophagy, and introducing WIPI2 improves lipid clearance. Thus, regulation of the intracellular WIPI2 protein level by mTORC1 and HUWE1 is a key determinant of autophagy flux and may coordinate the initiation, progression, and completion of autophagy.


Subject(s)
Autophagy/physiology , Carrier Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins , Ubiquitination/physiology
10.
Proc Natl Acad Sci U S A ; 120(39): e2308079120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37733743

ABSTRACT

TAK1 is a key modulator of both NF-κB signaling and RIPK1. In TNF signaling pathway, activation of TAK1 directly mediates the phosphorylation of IKK complex and RIPK1. In a search for small molecule activators of RIPK1-mediated necroptosis, we found R406/R788, two small molecule analogs that could promote sustained activation of TAK1. Treatment with R406 sensitized cells to TNF-mediated necroptosis and RIPK1-dependent apoptosis by promoting sustained RIPK1 activation. Using click chemistry and multiple biochemical binding assays, we showed that treatment with R406 promotes the activation of TAK1 by directly binding to TAK1, independent of its original target Syk kinase. Treatment with R406 promoted the ubiquitination of TAK1 and the interaction of activated TAK1 with ubiquitinated RIPK1. Finally, we showed that R406/R788 could promote the cancer-killing activities of TRAIL in vitro and in mouse models. Our studies demonstrate the possibility of developing small molecule TAK1 activators to potentiate the effect of TRAIL as anticancer therapies.


Subject(s)
Apoptosis , Neoplasms , Animals , Mice , Cell Death , Cytosol , Neoplasms/drug therapy , Neoplasms/genetics , Ubiquitination
11.
Nature ; 574(7779): 501-504, 2019 10.
Article in English | MEDLINE | ID: mdl-31645728

ABSTRACT

Because of their ability to confine light, optical resonators1-3 are of great importance to science and technology, but their performance is often limited by out-of-plane-scattering losses caused by inevitable fabrication imperfections4,5. Here we theoretically propose and experimentally demonstrate a class of guided resonances in photonic crystal slabs, in which out-of-plane-scattering losses are strongly suppressed by their topological nature. These resonances arise when multiple bound states in the continuum-each carrying a topological charge6-merge in momentum space and enhance the quality factors Q of all nearby resonances in the same band. Using such resonances in the telecommunication regime, we experimentally achieve quality factors as high as 4.9 × 105-12 times higher than those obtained with standard designs-and this enhancement remains robust for all of our samples. Our work paves the way for future explorations of topological photonics in systems with open boundary conditions and for their application to the improvement of optoelectronic devices in photonic integrated circuits.

12.
Mol Cell ; 68(2): 323-335.e6, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29033323

ABSTRACT

Acetylation is increasingly recognized as one of the major post-translational mechanisms for the regulation of multiple cellular functions in mammalian cells. Acetyltransferase p300, which acetylates histone and non-histone proteins, has been intensively studied in its role in cell growth and metabolism. However, the mechanism underlying the activation of p300 in cells remains largely unknown. Here, we identify the homeostatic sensor mTORC1 as a direct activator of p300. Activated mTORC1 interacts with p300 and phosphorylates p300 at 4 serine residues in the C-terminal domain. Mechanistically, phosphorylation of p300 by mTORC1 prevents the catalytic HAT domain from binding to the RING domain, thereby eliminating intra-molecular inhibition. Functionally, mTORC1-dependent phosphorylation of p300 suppresses cell-starvation-induced autophagy and activates cell lipogenesis. These results uncover p300 as a direct target of mTORC1 and suggest that the mTORC1-p300 pathway plays a pivotal role in cell metabolism by coordinately controlling cell anabolism and catabolism.


Subject(s)
Autophagy , Lipogenesis , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , p300-CBP Transcription Factors/metabolism , Animals , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/genetics , Phosphorylation/genetics , Protein Domains , TOR Serine-Threonine Kinases/genetics , p300-CBP Transcription Factors/genetics
13.
Mol Cell ; 67(6): 907-921.e7, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28844862

ABSTRACT

The class III phosphoinositide 3-kinase VPS34 plays a key role in the regulation of vesicular trafficking and macroautophagy. So far, we know little about the molecular mechanism of VPS34 activation besides its interaction with regulatory proteins to form complexes. Here, we report that VPS34 is specifically acetylated by the acetyltransferase p300, and p300-mediated acetylation represses VPS34 activity. Acetylation at K771 directly diminishes the affinity of VPS34 for its substrate PI, while acetylation at K29 hinders the VPS34-Beclin 1 core complex formation. Inactivation of p300 induces VPS34 deacetylation, PI3P production, and autophagy, even in AMPK-/-, TSC2-/-, or ULK1-/- cells. In fasting mice, liver autophagy correlates well with p300 inactivation/VPS34 deacetylation, which facilitates the clearance of lipid droplets in hepatocytes. Thus, p300-dependent VPS34 acetylation/deacetylation is the physiological key to VPS34 activation, which controls the initiation of canonical autophagy and of non-canonical autophagy in which the upstream kinases of VPS34 can be bypassed.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases/metabolism , Hepatocytes/enzymology , Lipid Metabolism , Liver/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Protein Processing, Post-Translational , Stress, Physiological , p300-CBP Transcription Factors/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Acetylation , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Enzyme Activation , Female , HEK293 Cells , HeLa Cells , Hepatocytes/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver/pathology , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol Phosphates/metabolism , Protein Binding , RNA Interference , Signal Transduction , Transfection , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , p300-CBP Transcription Factors/genetics
14.
Mol Cell ; 66(1): 154-162.e10, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28344083

ABSTRACT

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


Subject(s)
Cholesterol/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Smoothened Receptor/metabolism , Animals , CHO Cells , Cilia/metabolism , Cricetulus , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , HEK293 Cells , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Hedgehog Proteins/genetics , Humans , Mice , Mice, Transgenic , Mutation , NIH 3T3 Cells , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Phenotype , Protein Processing, Post-Translational , RNA Interference , Smoothened Receptor/genetics , Transfection
15.
Proc Natl Acad Sci U S A ; 119(49): e2206737119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442107

ABSTRACT

Orphan nuclear receptor Nurr1 plays important roles in the progression of various diseases, including Parkinson's disease, neuroinflammation, Alzheimer's disease, and multiple sclerosis. It can recognize DNA as a monomer or heterodimer with retinoid X receptor α (RXRα). But the molecular mechanism of its transcriptional activity regulation is still largely unknown. Here we obtained a crystal structure of monomer Nurr1 (DNA- and ligand-binding domains, DBD and LBD) bound to NGFI-B response element. The structure exhibited two different forms with distinct DBD orientations, unveiling the conformational flexibility of nuclear receptor monomer. We then generated an integrative model of Nurr1-RXRα heterodimer. In the context of heterodimer, the structural flexibility of Nurr1 would contribute to its transcriptional activity modulation. We demonstrated that the DNA sequence may specifically modulate the transcriptional activity of Nurr1 in the absence of RXRα agonist, but the modulation can be superseded when the agonist binds to RXRα. Together, we propose a set of signaling pathways for the constitutive transcriptional activation of Nurr1 and provide molecular mechanisms for therapeutic discovery targeting Nurr1 and Nurr1-RXRα heterodimer.


Subject(s)
Response Elements , Retinoid X Receptor alpha , Transcriptional Activation , Retinoid X Receptor alpha/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Protein Domains
16.
J Biol Chem ; 299(4): 104566, 2023 04.
Article in English | MEDLINE | ID: mdl-36871760

ABSTRACT

Synucleinopathies like Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA), have the same pathologic feature of misfolded α-synuclein protein (α-syn) accumulation in the brain. PD patients who carry α-syn hereditary mutations tend to have earlier onset and more severe clinical symptoms than sporadic PD patients. Therefore, revealing the effect of hereditary mutations to the α-syn fibril structure can help us understand these synucleinopathies' structural basis. Here, we present a 3.38 Å cryo-electron microscopy structure of α-synuclein fibrils containing the hereditary A53E mutation. The A53E fibril is symmetrically composed of two protofilaments, similar to other fibril structures of WT and mutant α-synuclein. The new structure is distinct from all other synuclein fibrils, not only at the interface between proto-filaments, but also between residues packed within the same proto-filament. A53E has the smallest interface with the least buried surface area among all α-syn fibrils, consisting of only two contacting residues. Within the same protofilament, A53E reveals distinct residue re-arrangement and structural variation at a cavity near its fibril core. Moreover, the A53E fibrils exhibit slower fibril formation and lower stability compared to WT and other mutants like A53T and H50Q, while also demonstrate strong cellular seeding in α-synuclein biosensor cells and primary neurons. In summary, our study aims to highlight structural differences - both within and between the protofilaments of A53E fibrils - and interpret fibril formation and cellular seeding of α-synuclein pathology in disease, which could further our understanding of the structure-activity relationship of α-synuclein mutants.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/metabolism , Cryoelectron Microscopy , Amyloid/chemistry , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mutation
17.
J Am Chem Soc ; 146(1): 723-732, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38116993

ABSTRACT

Despite the current progress achieved in asymmetric hydroacylations, highly enantioselective catalytic addition of unfunctionalized aldehydes to internal alkenes remains an unsolved challenge. Here, using a coordination-assisted strategy, we developed a rhodium-catalyzed regio- and enantioselective addition of unfunctionalized aldehydes to internal alkenes such as enamides and ß,γ-unsaturated amides. Valuable α-amino ketones and 1,4-dicarbonyl compounds were directly obtained with high enantioselectivity from readily available materials.

18.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37770059

ABSTRACT

Reef stonefish (Synanceia verrucosa) is one of the most venomous fishes, but its biomedical study has been restricted to molecular cloning and purification of its toxins, instead of high-throughput genetic research on related toxin genes. In this study, we constructed a chromosome-level haplotypic genome assembly for the reef stonefish. The genome was assembled into 24 pseudo-chromosomes, and the length totaled 689.74 Mb, reaching a contig N50 of 11.97 Mb and containing 97.8% of complete BUSCOs. A total of 24,050 protein-coding genes were annotated, of which metalloproteinases, C-type lectins, and stonustoxins (sntx) were the most abundant putative toxin genes. Multitissue transcriptomic and venom proteomic data showed that sntx genes, especially those clustered within a 50-kb region on the chromosome 2, had higher transcription levels than other types of toxins as well as those sntx genes scatteringly distributed on other chromosomes. Further comparative genomic analysis predicted an expansion of sntx-like genes in the Percomorpha lineage including nonvenomous fishes, but Scorpaenoidei species experienced extra independent sntx duplication events, marking the clear-cut origin of authentic toxic stonustoxins. In summary, this high-quality genome assembly and related comparative analysis of toxin genes highlight valuable genetic differences for potential involvement in the evolution of venoms among Scorpaeniformes fishes.


Subject(s)
Fish Venoms , Perciformes , Animals , Proteomics , Fish Venoms/genetics , Fish Venoms/toxicity , Fishes/genetics , Perciformes/genetics , Chromosomes/genetics
19.
Anal Chem ; 96(1): 514-521, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38145394

ABSTRACT

Modulating the photon emission of the luminophore for boosting chemiluminescence (CL) response is very crucial for the construction of highly sensitive sensors via the introduction of functionalized materials. Herein, the integration of the emitter and coreactant accelerator into one entity is realized by simply assembling cucurbit[7]uril (CB[7]) on the surface of gold nanoparticles (AuNPs) through simple assembly via a Au-O bond. The loaded CB[7] on the AuNPs improves their catalytic capacity for the generation of hydroxyl radicals(•OH). Moreover, the host-guest recognition interaction between luminol and CB[7] enables the capture of luminol on AuNPs efficiently. Also, the intramolecular electron-transfer reaction between the luminol and •OH enables the CL response more effectively in the entity, which greatly boosts photon emission ca 100 folds compared with the individual luminol/H2O2. The host-guest recognition between luminol and CB[7] is revealed by Fourier transform infrared spectroscopy, electrochemical, and thermogravimetric characterization. Moreover, the proposed CL system is successfully used for the sensitive and selective determination of dopamine (DA) based on a synergistic quenching mechanism including the competition quenching and radical-scavenging effect from DA. The present amplified strategy by integrating recognized and amplified elements within one entity simplifies the sensing process and holds great potential for sensitive analysis based on the self-enhanced strategies.


Subject(s)
Luminol , Metal Nanoparticles , Luminol/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Dopamine , Luminescence , Hydrogen Peroxide/chemistry , Luminescent Measurements/methods
20.
Small ; : e2402141, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953313

ABSTRACT

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

SELECTION OF CITATIONS
SEARCH DETAIL