Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Orthod Dentofacial Orthop ; 163(5): 628-644.e11, 2023 May.
Article in English | MEDLINE | ID: mdl-36801091

ABSTRACT

INTRODUCTION: Clear aligners (CAs) have attracted increasing attention from patients and orthodontists because of their excellent esthetics and comfort. However, treating tooth extraction patients with CAs is difficult because their biomechanical effects are more complicated than those of traditional appliances. This study aimed to analyze the biomechanical effect of CAs in extraction space closure under different anchorage controls, including moderate, direct strong, and indirect strong anchorage. It could provide several new cognitions for anchorage control with CAs through finite element analysis, further directing clinical practice. METHODS: A 3-dimensional maxillary model was generated by combining cone-beam computed tomography and intraoral scan data. Three-dimensional modeling software was used to construct a standard first premolar extraction model, temporary anchorage devices, and CAs. Subsequently, finite element analysis was performed to simulate space closure under different anchorage controls. RESULTS: Direct strong anchorage was beneficial for reducing the clockwise occlusal plane rotation, whereas indirect anchorage was conducive for anterior teeth inclination control. In the direct strong anchorage group, an increase in the retraction force would require more specific anterior teeth overcorrection to resist the tipping movement, mainly including lingual root control of the central incisor, followed by distal root control of the canine, lingual root control of the lateral incisor, distal root control of the lateral incisor, and distal root control of the central incisor. However, the retraction force could not eliminate the mesial movement of the posterior teeth, possibly causing a reciprocating motion during treatment. In indirect strong groups, when the button was close to the center of the crown, the second premolar presented less mesial and buccal tipping but more intrusion. CONCLUSIONS: The 3 anchorage groups showed significantly different biomechanical effects in both the anterior and posterior teeth. Specific overcorrection or compensation forces should be considered when using different anchorage types. The moderate and indirect strong anchorages have a more stable and single-force system and could be reliable models in investigating the precise control of future tooth extraction patients.


Subject(s)
Orthodontic Anchorage Procedures , Orthodontic Appliances, Removable , Finite Element Analysis , Esthetics, Dental , Incisor , Bicuspid/surgery , Maxilla , Tooth Movement Techniques/methods , Biomechanical Phenomena
2.
Zhen Ci Yan Jiu ; 48(4): 385-91, 2023 Apr 25.
Article in Zh | MEDLINE | ID: mdl-37186204

ABSTRACT

OBJECTIVE: To investigate the location and anatomical structure of "Shaochong"(HT9), "Shaofu"(HT8), "Shenmen"(HT7), "Lingdao"(HT4) and "Shaohai"(HT3) in the rabbit's forelimb. METHODS: Sixteen rabbits (half male and half female) were used in the present study. By referring to the national standards on the location of acupoints in the human body and the literature about the location of acupoints in the rabbit, and by using the method of comparative anatomy, the location and needling operation of the Five-shu acupoints of Shaoyin Heart Meridian on the rabbit's forelimb were defined, and these acupoints were needled and CT three-dimensional reconstruction were conducted. Then, the rabbits were killed, and intravascular perfusion was performed, followed by inserting acupuncture needles into these five acupoints for observing the anatomical relationship between the inserted acupuncture needle and the structure of surrounding tissues. RESULTS: HT9 is located at the medial side of the little finger of forelimb, about 1 mm beside the nail root, and is adjacent to the superficial flexor tendon of the finger, the dorsal branches of the proper palmar digital artery and vein, and the endings of dorsal branch of palmar digital proper nerve of the ulnar nerve on the fifth finger side. HT8 is located at the palm side of the forelimb, horizontally parallel to the proximal end of the 5th metacarpophalangeal joint and between the 4th and 5th metacarpal bones, and is adjacent to the lumbricalis, the 4th and 5th interossei, and common palmar digital artery and vein and the palmar digital proper nerve of the ulnar nerve. HT7 is located at the medial margin of the extensor carpal tendon on the ulnar side, between the distal end of the ulna and the ulnar carpal bone, and is adjacent to the tendons of flexor carpi ulnaris and extensor carpi ulnaris, ulnar artery, ulnar vein and ulnar nerve. HT4 is located at the medial border of the ulnar flexor tendon, about 1.5 cun superior to HT7, and is adjacent to extensor carpi ulnaris, flexor carpi ulnaris, flexor digitorum superficialis, flexor digitorum profundus, ulnar artery, vein and ulnar nerve. HT3 is located at the depression, medial to the condyle of humerus when the elbow is bent at 90°, its neighbor structure is composed of pronator teres, biceps brachii, brachial artery and vein, radial collateral artery, radial collateral vein, medial antebrachial cutaneous nerve and median nerve. CONCLUSION: In the rabbit, there is a close relationship between HT9, HT8, HT7, HT4 and HT3 regions and brachial vascular and its branches, cephalic vein and its branches, medial antebrachial cutaneous nerve, median nerve and ulnar nerve, which is the morphological basis of the Five-shu acupoints of Shaoyin Heart Meridian for treating some related clinical disorders.


Subject(s)
Meridians , Animals , Rabbits , Male , Female , Humans , Acupuncture Points , Imaging, Three-Dimensional , Forelimb/diagnostic imaging , Forelimb/anatomy & histology , Tomography, X-Ray Computed
3.
World J Gastroenterol ; 26(10): 1029-1041, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32205994

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a global metabolism-associated liver disease. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered secreted protein that is involved in metabolic homeostasis. However, much remains to be discovered about its function in hepatic lipid metabolism; thus, we assessed whether MANF could regulate hepatic metabolism. AIM: To establish in vivo and in vitro NAFLD models to explore the role of MANF in hepatic lipid metabolism. METHODS: HepG2 cells treated with free fatty acids (FFAs) and ob/ob mice were used as NAFLD models. Liver tissues collected from wild type and ob/ob mice were used to detect MANF expression. Cells were treated with FFAs for different durations. Moreover, we used lentiviral constructs to establish overexpression and knockdown cell models in order to interfere with MANF expression levels and observe whether MANF influences hepatic steatosis. Western blot analysis and quantitative real-time PCR were used to detect protein and gene expression, and oil red O staining was used to visualize intracellular lipid droplets. RESULTS: Hepatic MANF protein and mRNA expression in wild type mice were 10-fold and 2-fold higher, respectively, than those in ob/ob mice. The MANF protein was temporarily increased by 1.3-fold after stimulation with FFAs for 24 h and gradually decreased to 0.66-fold that of the control at the 72 h time point in HepG2 cells. MANF deficiency upregulated the expression of genes involved in fatty acid synthesis, cholesterol synthesis, and fatty acid uptake and aggravated HepG2 cell steatosis, while MANF overexpression inhibited fatty acid synthesis and uptake and cholesterol synthesis, and rescued HepG2 cells from FFAs-induced steatosis. Furthermore, a significant decrease in triglyceride levels was observed in the MANF overexpression group compared with the control group (0.4288 ± 0.0081 mmol/g vs 0.3746 ± 0.0121 mmol/g, P < 0.05) upon FFAs treatment. There was also a 17% decrease in intracellular total cholesterol levels between the MANF overexpression group and the control group (0.1301 ± 0.0059 mmol/g vs 0.1088 ± 0.0009 mmol/g, P < 0.05) upon FFAs treatment. Moreover, MANF suppressed lipid deposition in HepG2 cells. CONCLUSION: Our findings indicate that MANF improves the phenotype of liver cell steatosis and may be a potential therapeutic target in hepatic steatosis processes.


Subject(s)
Lipid Metabolism/genetics , Lipogenesis/genetics , Nerve Growth Factors/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Animals , Disease Models, Animal , Fatty Acids, Nonesterified/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL