ABSTRACT
BACKGROUND: Stroke survivors with impaired balance and motor function tend to have relatively poor functional outcomes. The cerebellum and primary motor cortex (M1) have been suggested as targets for neuromodulation of balance and motor recovery after stroke. This study aimed to compare the efficacy and safety of intermittent theta-burst stimulation (iTBS) to the cerebellum or M1 on balance and motor recovery in patients with stroke. METHODS: In this randomized, double-blind, sham-controlled clinical trial, patients with subacute stroke were randomly divided into 3 groups: M1-, cerebellar-, and sham-iTBS (n=12 per group; 15 sessions, 3 weeks). All outcomes were evaluated before intervention (T0), after 1 week of intervention (T1), after 3 weeks of intervention (T2), and at follow-up (T3). The primary outcome was the Berg balance scale score at T2. Secondary outcomes include the Fugl-Meyer assessment scale for lower extremities, the trunk impairment scale, the Barthel index, the modified Rankin Scale, the functional ambulation categories, and cortical excitability. RESULTS: A total of 167 inpatients were screened, 36 patients (age, 57.50±2.41 years; 10 women, 12 ischemic) were enrolled between December 2020 and January 2023. At T2, M1- or cerebellar-iTBS significantly improved Berg balance scale scores by 10.7 points ([95% CI, 2.7-18.6], P=0.009) and 14.2 points ([95% CI, 1.2-27.2], P=0.032) compared with the sham-iTBS group. Moreover, the cerebellar-iTBS group showed a significantly greater improvement in Fugl-Meyer assessment scale for lower extremities scores by 5.6 points than the M1-iTBS ([95% CI, 0.3-10.9], P=0.037) and by 7.8 points than the sham-iTBS ([95% CI, 1.1-14.5], P=0.021) groups at T2. The motor-evoked potential amplitudes of the M1- and cerebellar-iTBS groups were higher than those of the sham-iTBS group (P<0.001). CONCLUSIONS: Both M1- and cerebellar-iTBS could improve balance function. Moreover, cerebellar-iTBS, but not M1-iTBS, induced significant effects on motor recovery. Thus, cerebellar-iTBS may be a valuable new therapeutic option in stroke rehabilitation programs. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2100047002.
Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Female , Middle Aged , Transcranial Magnetic Stimulation , CerebellumABSTRACT
Bifunctional catalyst Fe/Fe3C@C with magnetism was successfully prepared by sol-gel method and proved to degrade methyl orange with high efficiency under microwave irradiation. The Fe/Fe3C@C catalysts calcined at 500 °C, 600 °C, 700 °C were intensively characterized and compared in their crystalline structure, porosity, morphology and dielectric property. The results imply a phase and structure transformation in the materials as the calcination temperature increased. Fe/Fe3C@C-700 exhibited a core-shell structure and an apparent Fe3C phase. In addition, Fe/Fe3C@C-700 demonstrated excellent dielectric property as a microwave absorber than Fe/Fe3C@C-500 and Fe/Fe3C@C-600. At the same time, it gave a 100 % removal rate in 30 s for the degradation of methyl orange under microwave irradiation, outperformed the Fe/Fe3C@C-500 and Fe/Fe3C@C-600 and most other reported catalysts in similar studies. The possible mechanism of the methyl orange degradation should be ascribed to the in situ generation of â¢OH and O2â¢- active species over the Fe/Fe3C@C catalyst. The excellent microwave absorbing property of Fe/Fe3C@C-700 could also boost its catalytic activity and play a critical role during the super-fast microwave-assisted degradation process. The findings in this study could be informative for the development of a continuous process of dye wastewater treatment for industrial implementation.