Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Mol Cell ; 81(16): 3339-3355.e8, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34352206

ABSTRACT

Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.


Subject(s)
Cholangiocarcinoma/genetics , GTP-Binding Proteins/genetics , Methyltransferases/genetics , Protein Biosynthesis , Animals , Carcinogenesis/genetics , Cholangiocarcinoma/pathology , Disease Progression , ErbB Receptors/genetics , Guanosine/analogs & derivatives , Guanosine/genetics , Humans , Mice , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA, Transfer/genetics
2.
Hepatology ; 79(4): 780-797, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37725755

ABSTRACT

BACKGROUND AND AIMS: Scirrhous HCC (SHCC) is one of the unique subtypes of HCC, characterized by abundant fibrous stroma in the tumor microenvironment. However, the molecular traits of SHCC remain unclear, which is essential to develop specialized therapeutic approaches for SHCC. APPROACH AND RESULTS: We presented an integrative analysis containing single-cell RNA-sequencing, whole-exome sequencing, and bulk RNA-sequencing in SHCC and usual HCC samples from 134 patients to delineate genomic features, transcriptomic profiles, and stromal immune microenvironment of SHCC. Multiplexed immunofluorescence staining, flow cytometry, and functional experiments were performed for validation. Here, we identified SHCC presented with less genomic heterogeneity while possessing a unique transcriptomic profile different from usual HCC. Insulin-like growth factor 2 was significantly upregulated in SHCC tumor cells compared to usual HCC, and could serve as a potential diagnostic biomarker for SHCC. Significant tumor stromal remodeling and hypoxia were observed in SHCC with enrichment of matrix cancer-associated fibroblasts and upregulation of hypoxic pathways. Insulin-like growth factor 2 was identified as a key mediator in shaping the hypoxic stromal microenvironment of SHCC. Under this microenvironment, SHCC exhibited an immunosuppressive niche correlated to enhanced VEGFA signaling activity, where CD4 + T cells and CD8 + T cells were dysfunctional. Furthermore, we found that another hypoxic-related molecule SPP1 from SHCC tumor cells suppressed the function of dendritic cells via the SPP1-CD44 axis, which also probably hindered the activation of T cells. CONCLUSION: We uncovered the genomic characteristics of SHCC, and revealed a hypoxia-driven tumor stroma remodeling and immunosuppressive microenvironment in SHCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Hypoxia/metabolism , Signal Transduction , RNA , Tumor Microenvironment
3.
Hepatology ; 79(3): 650-665, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37459556

ABSTRACT

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS: We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-ß cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-ß of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-ß. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS: Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.


Subject(s)
Aflatoxins , Hepatoblastoma , Liver Neoplasms , Child , Humans , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Transforming Growth Factor beta , Liver Neoplasms/metabolism , Transcription Factors/genetics , Phenotype , Tumor Microenvironment
4.
Hepatology ; 79(3): 560-574, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37733002

ABSTRACT

BACKGROUND AND AIMS: NASH-HCC is inherently resistant to immune checkpoint blockade, but its tumor immune microenvironment is largely unknown. APPROACH AND RESULTS: We applied the imaging mass cytometry to construct a spatially resolved single-cell atlas from the formalin-fixed and paraffin-embedded tissue sections from patients with NASH-HCC, virus-HCC (HBV-HCC and HCV-HCC), and healthy donors. Based on 35 biomarkers, over 750,000 individual cells were categorized into 13 distinct cell types, together with the expression of key immune functional markers. Higher infiltration of T cells, myeloid-derived suppressor cell (MDSCs), and tumor-associated macrophages (TAMs) in HCC compared to controls. The distribution of immune cells in NASH-HCC is spatially heterogeneous, enriched at adjacent normal tissues and declined toward tumors. Cell-cell connections analysis revealed the interplay of MDSCs and TAMs with CD8 + T cells in NASH-HCC. In particular, exhausted programmed cell death 1 (PD-1 + )CD8 + T cells connected with programmed cell death-ligand 1 (PD-L1 + )/inducible T cell costimulator (ICOS + ) MDSCs and TAMs in NASH-HCC, but not in viral HCC. In contrast, CD4 + /CD8 + T cells with granzyme B positivity were reduced in NASH-HCC. Tumor cells expressed low PD-L1 and showed few connections with immune cells. CONCLUSIONS: Our work provides the first detailed spatial map of single-cell phenotypes and multicellular connections in NASH-HCC. We demonstrate that interactions between MDSCs and TAMs with effector T cells underlie immunosuppression in NASH-HCC and are an actionable target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/metabolism , B7-H1 Antigen/metabolism , Proteomics , CD8-Positive T-Lymphocytes , Biomarkers/metabolism , Tumor Microenvironment
5.
Br J Cancer ; 130(6): 951-960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38245662

ABSTRACT

BACKGROUND: Accurate estimation of the long-term risk of recurrence in patients with non-metastatic colorectal cancer (CRC) is crucial for clinical management. Histology-based deep learning is expected to provide more abundant information for risk stratification. METHODS: We developed and validated a weakly supervised deep-learning model for predicting 5-year relapse-free survival (RFS) to stratify patients with different risks based on histological images from three hospitals of 614 cases with non-metastatic CRC. A deep prognostic factor (DL-RRS) was established to stratify patients into high and low-risk group. The areas under the curve (AUCs) were calculated to evaluate the performances of models. RESULTS: Our proposed model achieves the AUCs of 0.833 (95% CI: 0.736-0.905) and 0.715 (95% CI: 0.647-0.776) on validation cohort and external test cohort, respectively. The 5-year RFS rate was 45.7% for high DL-RRS patients, and 82.5% for low DL-RRS patients respectively in the external test cohort (HR: 3.89, 95% CI: 2.51-6.03, P < 0.001). Adjuvant chemotherapy was associated with improved RFS in Stage II patients with high DL-RRS (HR: 0.15, 95% CI: 0.06-0.38, P < 0.001). CONCLUSIONS: DL-RRS has a good predictive performance of 5-year recurrence risk in CRC, and will better serve the clinical decision-making.


Subject(s)
Colorectal Neoplasms , Deep Learning , Humans , Prognosis , Neoplasm Recurrence, Local/pathology , Risk Factors , Colorectal Neoplasms/pathology , Retrospective Studies
6.
J Hepatol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508240

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.

7.
Ann Rheum Dis ; 83(5): 608-623, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38290829

ABSTRACT

OBJECTIVES: The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS: Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS: We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION: The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Biomarkers/metabolism , Dendritic Cells/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/pathology , Th1 Cells , Antigens, Differentiation, Myelomonocytic , Antigens, CD
8.
Hepatology ; 77(6): 1896-1910, 2023 06 01.
Article in English | MEDLINE | ID: mdl-35698894

ABSTRACT

BACKGROUND AND AIMS: Radiotherapy is an increasingly essential therapeutic strategy in the management of hepatocellular carcinoma (HCC). Nevertheless, resistance to radiotherapy is one of the primary obstacles to successful treatment outcomes. Hence, we aim to elucidate the mechanisms underlying radioresistance and identify reliable biotargets that would be inhibited to enhance the efficacy of radiotherapy in HCC. APPROACH AND RESULTS: From a label-free quantitative proteome screening, we identified transfer RNA (tRNA; guanine- N [7]-) methyltransferase 1 (METTL1), a key enzyme for N7-methylguanosine (m 7 G) tRNA modification, as an essential driver for HCC cells radioresistance. We reveal that METTL1 promotes DNA double-strand break (DSB) repair and renders HCC cells resistant to ionizing radiation (IR) using loss-of-function and gain-of-function assays in vitro and in vivo. Mechanistically, METTL1-mediated m 7 G tRNA modification selectively regulates the translation of DNA-dependent protein kinase catalytic subunit or DNA ligase IV with higher frequencies of m 7 G-related codons after IR treatment, thereby resulting in the enhancement of nonhomologous end-joining (NHEJ)-mediated DNA DSB repair efficiency. Clinically, high METTL1 expression in tumor tissue is significantly correlated with poor prognosis in radiotherapy-treated patients with HCC. CONCLUSIONS: Our findings show that METTL1 is a critical enhancer for HCC cell NHEJ-based DNA repair following IR therapy. These findings give insight into the role of tRNA modification in messenger RNA translation control in HCC radioresistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , DNA Repair , Methyltransferases/genetics , RNA, Transfer
9.
Hepatology ; 77(4): 1122-1138, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35598182

ABSTRACT

BACKGROUND AND AIMS: Radiofrequency ablation (RFA) is an important curative therapy in hepatocellular carcinoma (HCC), but recurrence rate remains as high as all the other HCC therapeutic modalities. Methyltransferase 1 (METTL1), an enzyme for m 7 G tRNA modification, was reported to promote HCC development. Here, we assessed the role of METTL1 in shaping the immunosuppressive tumor microenvironment after insufficient RFA (iRFA). APPROACH AND RESULTS: By immunohistochemistry and multiplex immunofluorescence (mIF) staining, we showed that METTL1 expression was enhanced in post-RFA recurrent HCC, accompanied by increased CD11b + CD15 + polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and decreased CD8 + T cells. Mechanistically, heat-mediated METTL1 upregulation enhanced TGF-ß2 translation to form the immunosuppressive environment by induction of myeloid-derived suppressor cell. Liver-specific overexpression or knockdown of Mettl1 significantly affected the accumulation of PMN-MDSCs and subsequently affected CD8 + T cell infiltration. Complete RFA successfully eliminated the tumor, whereas iRFA-treated mice exhibited enhanced tumor growth and metastasis with increased PMN-MDSC accumulation and decreased CD8 + T cells compared to sham surgery. Interrupting METTL1-TGF-ß2-PMN-MDSC axis by anti-Ly6G antibody, or knockdown of hepatoma-intrinsic Mettl1 or Tgfb2 , or TGF-ß signaling blockade significantly mitigated tumor progression induced by iRFA and restored CD8 + T cell population. CONCLUSIONS: Our study sheds light on the pivotal role of METTL1 in modulating an immunosuppressive microenvironment and demonstrated that interrupting METTL1-TGF-ß2-PMN-MDSC axis could be a therapeutic strategy to restore antitumor immunity and prevent HCC recurrence after RFA treatment, meriting further clinical studies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Liver Neoplasms/pathology , Transforming Growth Factor beta2/metabolism , Tumor Microenvironment
10.
Mol Ther ; 31(6): 1596-1614, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-35965412

ABSTRACT

Radiofrequency heat ablation is an ideal radical treatment for hepatocellular carcinoma (HCC). However, insufficient radiofrequency ablation (IRFA) could lead to high recurrence of HCC. N7-methylguanosine (m7G) on tRNAs, an evolutionally conservative modification in mammals and yeast, modulates heat stress responses and tumor progression, while its function in HCC recurrence after IRFA remains unknown. Here, we found that IRFA significantly upregulates the level of m7G tRNA modification and its methyltransferase complex components METTL1/WDR4 in multiple systems including HCC patient-derived xenograft (PDX) mouse, patients' HCC tissues, sublethal-heat-treated models of HCC cell lines, and organoids. Functionally, gain-/loss-of-function assays showed that METTL1-mediated m7G tRNA modification promotes HCC metastasis under sublethal heat exposure both in vitro and in vivo. Mechanistically, we found that METTL1 and m7G tRNA modification enhance the translation of SLUG/SNAIL in a codon frequency-dependent manner under sublethal heat stress. Overexpression of SLUG/SNAIL rescued the malignant potency of METTL1 knockdown HCC cells after sublethal heat exposure. Our study uncovers the key functions of m7G tRNA modification in heat stress responses and HCC recurrence after IRFA, providing molecular basis for targeting METTL1-m7G-SLUG/SNAIL axis to prevent HCC metastasis after radiofrequency heat ablation treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Radiofrequency Ablation , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , RNA, Transfer/genetics , Mammals , GTP-Binding Proteins/metabolism
11.
Mol Ther ; 31(11): 3225-3242, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37735874

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-ß pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Mice , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Cholangiocarcinoma/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Protein Biosynthesis , Cell Line, Tumor
12.
Gut ; 72(8): 1555-1567, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36283801

ABSTRACT

OBJECTIVE: Intrahepatic cholangiocarcinoma (ICC) exhibits very low response rate to immune checkpoint inhibitors (ICIs) and the underlying mechanism is largely unknown. We investigate the tumour immune microenvironment (TIME) of ICCs and the underlying regulatory mechanisms with the aim of developing new target to inhibit tumour growth and improve anti-programmed cell death protein-1 (PD-1) efficacy. DESIGN: Tumour tissues from patients with ICC together with hydrodynamic ICC mouse models were employed to identify the key cell population in TIME of ICCs. Functional analysis and mechanism studies were performed using cell culture, conditional knockout mouse model and hydrodynamic transfection ICC model. The efficacy of single or combined therapy with anti-PD-1 antibody, gene knockout and chemical inhibitor were evaluated in vivo. RESULTS: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are enriched in advanced ICCs and significantly correlated with N7-methylguanosine tRNA methyltransferase METTL1. Using diverse in vivo cancer models, we demonstrate the crucial immunomodulator function of METTL1 in regulation of PMN-MDSC accumulation in TIME and ICC progression. Mechanistically, CXCL8 in human and Cxcl5 in mouse are key translational targets of METTL1 that facilitate its function in promoting PMN-MDSC accumulation in TIME and ICC progression in vivo. Co-blockade of METTL1 and its downstream chemokine pathway enhances the anti-PD-1 efficacy in ICC preclinical mouse models. CONCLUSIONS: Our data uncover novel mechanisms underlying chemokine regulation and TIME shaping at the layer of messenger RNA translation level and provide new insights for development of efficient cancer immunotherapeutic strategies.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Mice , Animals , Guanosine/metabolism , RNA, Transfer/metabolism , Tumor Microenvironment , Cell Line, Tumor
13.
Gut ; 72(6): 1196-1210, 2023 06.
Article in English | MEDLINE | ID: mdl-36596711

ABSTRACT

OBJECTIVE: Revealing the single-cell immune ecosystems in true versus de novo hepatocellular carcinoma (HCC) recurrences could help the optimal development of immunotherapies. DESIGN: We performed 5'and VDJ single-cell RNA-sequencing on 34 samples from 20 recurrent HCC patients. Bulk RNA-sequencing, flow cytometry, multiplexed immunofluorescence, and in vitro functional analyses were performed on samples from two validation cohorts. RESULTS: Analyses of mutational profiles and evolutionary trajectories in paired primary and recurrent HCC samples using whole-exome sequencing identified de novo versus true recurrences, some of which occurred before clinical diagnosis. The tumour immune microenvironment (TIME) of truly recurrent HCCs was characterised by an increased abundance in KLRB1+CD8+ T cells with memory phenotype and low cytotoxicity. In contrast, we found an enrichment in cytotoxic and exhausted CD8+ T cells in the TIME of de novo recurrent HCCs. Transcriptomic and interaction analyses showed elevated GDF15 expression on HCC cells in proximity to dendritic cells, which may have dampened antigen presentation and inhibited antitumour immunity in truly recurrent lesions. In contrast, myeloid cells' cross talk with T cells-mediated T cell exhaustion and immunosuppression in the TIME of de novo recurrent HCCs. Consistent with these findings, a phase 2 trial of neoadjuvant anti-PD-1 immunotherapy showed more responses in de novo recurrent HCC patients. CONCLUSION: True and de novo HCC recurrences occur early, have distinct TIME and may require different immunotherapy strategies. Our study provides a source for genomic diagnosis and immune profiling for guiding immunotherapy based on the type of HCC recurrence and the specific TIME.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Hepatitis B virus/genetics , CD8-Positive T-Lymphocytes , Ecosystem , RNA/metabolism , Tumor Microenvironment
14.
J Transl Med ; 21(1): 276, 2023 04 23.
Article in English | MEDLINE | ID: mdl-37088830

ABSTRACT

BACKGROUND: Both dysregulation of mechanistic target of rapamycin (mTOR) signalling and DNA methylation patterns have been shown to be closely associated with tumor progression and serve as promising targets for hepatocellular carcinoma (HCC) therapy. Although their respective roles in HCC have been extensively revealed, the existence of molecular interactions between them remains largely unknown. METHODS: The association of DNA methylation and mTOR signalling in HCC tissues and cell lines was assessed. A Kaplan‒Meier analysis was applied to estimate the overall survival (OS) and recurrence-free survival (RFS) of HCC patients. The modulation of DNMT1 by mTOR in HCC cell lines was determined. The effect of the drug combination in cell lines and mouse models was examined. RESULTS: The results showed that the DNA methylation level was positively associated with the activation of mTOR signalling in HCC tissues and cell lines. Moreover, HCC patients with higher DNA methylation levels and enhanced activation of mTOR signalling exhibited the worst prognosis. Then, we screened methylation-related enzymes and found that the activation of mTOR signalling increased DNMT1 expression and activity. In addition, mTOR enhanced the translational efficiency of DNMT1 in a 4E-BP1-dependent manner, which is based on the pyrimidine rich translational element (PRTE)-containing 5'UTR of DNMT1. Moreover, we demonstrated that the combined inhibition of mTOR and DNMT synergistically inhibited HCC growth in vitro and in vivo. CONCLUSIONS: In addition to some already identified pro-cancer downstream molecules, the activation of mTOR signalling was found to promote DNA methylation by increasing the translation of DNMT1. Furthermore, combined targeting of mTOR and DNMT1 has been demonstrated to have a more effective tumor suppressive function in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , Liver Neoplasms/pathology , Sirolimus , TOR Serine-Threonine Kinases/metabolism
15.
BMC Infect Dis ; 23(1): 443, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391716

ABSTRACT

BACKGROUND: Negative conversion of nucleic acid was a key factor in deciding discharge or the end of isolation of asymptomatic or mild COVID-19 patients. We aimed to explore the effect of vaccination on the time to negative conversion after Omicron infection. METHODS: This retrospective cohort study included asymptomatic or mild patients with COVID-19 admitted to Fangcang shelter Hospital from November 10, 2022 to December 2, 2022. The relationship between vaccination status and the time to negative conversion was analyzed by multiple linear regression. RESULTS: A total of 2,104 asymptomatic or mild COVID-19 patients were included in the analysis, of whom 1,963 were vaccinated. The mean time to negative conversion of no vaccination, one dose, two doses, and three doses were 12.57 (5.05), 12.18 (3.46), 11.67 (4.86) and 11.22 (4.02) days, respectively (p = 0.002). Compared with no vaccination, two doses (ß=-0.88, 95% CI: -1.74, -0.02, p = 0.045), and three doses (ß=-1.51, 95% CI: -2.33, -0.70, p < 0.001) were both associated with shorter time to negative conversion. Comparing with two doses, booster dose was associated significantly with shorter time to negative conversion (ß=-0.63, 95% CI: -1.07, -0.20, p = 0.004). Age was positively correlated with the time to negative conversion (ß = 0.04, 95% CI: 0.02, 0.05, p < 0.001). CONCLUSION: Vaccination with inactivated vaccine and booster dose can shorten the time to negative conversion of asymptomatic or mild COVID-19 patients. The significant prolongation of time to negative conversion with increasing age suggests the promotion of vaccination, especially booster dose, particularly in the elderly.


Subject(s)
COVID-19 , Nucleic Acids , Aged , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Hospitals, Special , Retrospective Studies , Mobile Health Units
16.
Molecules ; 28(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36677697

ABSTRACT

Emerging chromium (Cr) species have attracted increasing concern. A majority of Cr species, especially hexavalent chromium (Cr(VI)), could lead to lethal effects on human beings, animals, and aquatic lives even at low concentrations. One of the conventional water-treatment methodologies, adsorption, could remove these toxic Cr species efficiently. Additionally, adsorption possesses many advantages, such as being cost-saving, easy to implement, highly efficient and facile to design. Previous research has shown that the application of different adsorbents, such as carbon nanotubes (carbon nanotubes (CNTs) and graphene oxide (GO) and its derivatives), activated carbons (ACs), biochars (BCs), metal-based composites, polymers and others, is being used for Cr species removal from contaminated water and wastewater. The research progress and application of adsorption for Cr removal in recent years are reviewed, the mechanisms of adsorption are also discussed and the development trend of Cr treatment by adsorption is proposed.

17.
Hepatology ; 74(3): 1339-1356, 2021 09.
Article in English | MEDLINE | ID: mdl-33638162

ABSTRACT

BACKGROUND AND AIMS: The dynamic N6-methyladenosine (m6 A) mRNA modification is essential for acute stress response and cancer progression. Sublethal heat stress from insufficient radiofrequency ablation (IRFA) has been confirmed to promote HCC progression; however, whether m6 A machinery is involved in IRFA-induced HCC recurrence remains open for study. APPROACH AND RESULTS: Using an IRFA HCC orthotopic mouse model, we detected a higher level of m6 A reader YTH N6-methyladenosine RNA binding protein 1-3 (YTHDF1) in the sublethal-heat-exposed transitional zone close to the ablation center than that in the farther area. In addition, we validated the increased m6 A modification and elevated YTHDF1 protein level in sublethal-heat-treated HCC cell lines, HCC patient-derived xenograft (PDX) mouse model, and patients' HCC tissues. Functionally, gain-of-function/loss-of-function assays showed that YTHDF1 promotes HCC cell viability and metastasis. Knockdown of YTHDF1 drastically restrains the tumor metastasis evoked by sublethal heat treatment in tail vein injection lung metastasis and orthotopic HCC mouse models. Mechanistically, we found that sublethal heat treatment increases epidermal factor growth receptor (EGFR) m6 A modification in the vicinity of the 5' untranslated region and promotes its binding with YTHDF1, which enhances the translation of EGFR mRNA. The sublethal-heat-induced up-regulation of EGFR level was further confirmed in the IRFA HCC PDX mouse model and patients' tissues. Combination of YTHDF1 silencing and EGFR inhibition suppressed the malignancies of HCC cells synergically. CONCLUSIONS: The m6 A-YTHDF1-EGFR axis promotes HCC progression after IRFA, supporting the rationale for targeting m6 A machinery combined with EGFR inhibitors to suppress HCC metastasis after RFA.


Subject(s)
Carcinoma, Hepatocellular/surgery , Liver Neoplasms/surgery , RNA Processing, Post-Transcriptional/radiation effects , RNA, Messenger/metabolism , RNA-Binding Proteins/radiation effects , Radiofrequency Ablation/adverse effects , Animals , Carcinoma, Hepatocellular/genetics , Cell Survival/genetics , Cell Survival/radiation effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/radiation effects , Gene Expression Regulation, Neoplastic , Heat-Shock Response/radiation effects , Humans , Liver Neoplasms/genetics , Methylation/radiation effects , Mice , Neoplasm Metastasis , Neoplasm Transplantation , RNA Processing, Post-Transcriptional/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Treatment Failure
18.
BMC Cancer ; 22(1): 709, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35761201

ABSTRACT

AIMS: With prevalence of hepatocellular carcinoma (HCC) in low-risk population (LRP), establishing a non-invasive diagnostic strategy becomes increasingly urgent to spare unnecessary biopsies in this population. The purposes of this study were to find characterisics of HCC and to establish a proper non-invasive method to diagnose HCC in LRP. METHODS: A total of 681 patients in LRP (defined as the population without cirrhosis, chronic HBV infection or HCC history) were collected from 2 institutions. The images of computed tomography (CT) and magnetic resonance imaging (MRI) were manually analysed. We divided the patients into the training cohort (n = 324) and the internal validating cohort (n = 139) by admission time in the first institution. The cohort in the second institution was viewed as the external validation (n = 218). A multivariate logistic regression model incorporating both imaging and clinical independent risk predictors was developed. C-statistics was used to evaluate the diagnostic performance. RESULTS: Besides the major imaging features of HCC (non-rim enhancement, washout and enhancing capsule), tumor necrosis or severe ischemia (TNSI) on imaging and two clinical characteristics (gender and alpha fetoprotein) were also independently associated with HCC diagnosis (all P < 0.01). A clinical model (including 3 major features, TNSI, gender and AFP) was built to diagnose HCC and achieved good diagnostic performance (area under curve values were 0.954 in the training cohort, 0.931 in the internal validation cohort and 0.902 in the external cohort). CONCLUSIONS: The clinical model in this study developed a satisfied non-invasive diagnostic performance for HCC in LRP.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Contrast Media , Humans , Liver Cirrhosis/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging/methods , Retrospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
19.
Liver Int ; 42(6): 1423-1431, 2022 06.
Article in English | MEDLINE | ID: mdl-35319151

ABSTRACT

BACKGROUND AND AIMS: Radiological prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) is essential but few models were clinically implemented because of limited interpretability and generalizability. METHODS: Based on 2096 patients in three independent HCC cohorts, we established and validated an MVI predicting model. First, we used data from the primary cohort to train a 3D-ResNet network for MVI prediction and then optimised the model with "expert-inspired training" for model construction. Second, we implemented the model to the other two cohorts using three implementation strategies, the original model implementation, data sharing model implementation and skeleton sharing model implementation, the latter two of which used part of the cohorts' data for fine-tuning. The areas under the receiver operating characteristic curve (AUCs) were calculated to compare the performances of different models. RESULTS: For the MVI predicting model, the AUC of the expert-inspired model was 0.83 (95% CI: 0.77-0.88) compared to 0.54 (95% CI: 0.46-0.62) of model before expert-inspiring. Taking this model as an original model, AUC on the second cohort was 0.76 (95% CI: 0.67-0.84). The AUC was improved to 0.83 (95% CI: 0.77-0.90) with the data-sharing model, and further improved to 0.85 (95% CI: 0.79-0.92) with the skeleton sharing model. The trend that the skeleton sharing model had an advantage in performance was similar in the third cohort. CONCLUSIONS: We established an expert-inspired model with better predictive performance and interpretability than the traditional constructed model. Skeleton sharing process is superior to data sharing and direct model implementation in model implementation.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Neoplasm Invasiveness/pathology , Radiopharmaceuticals , Retrospective Studies , Skeleton/pathology
20.
Immun Ageing ; 19(1): 46, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253778

ABSTRACT

BACKGROUND: Vaccination is important in influenza prevention but the immune response wanes with age. The circadian nature of the immune system suggests that adjusting the time of vaccination may provide an opportunity to improve immunogenicity. Our previous cluster trial in Birmingham suggested differences between morning and afternoon vaccination for some strains in the influenza vaccine in older adults. Whether this effect is also seen in a younger age group with less likelihood of compromised immunity is unknown. We therefore conducted an individual-based randomized controlled trial in Guangzhou to test the hypothesis that influenza vaccination in the morning induces a stronger immune response in older adults than afternoon vaccination. We included adults in middle age to determine if the effect was also seen in younger age groups. RESULTS: Of the 418 participants randomised, 389 (93.1%, 191 middle-aged adults aged 50-60 years and 198 older adults aged 65-75 years) were followed up. Overall, there was no significant difference between the antibody titers (geometric mean /95% CI) after morning vs afternoon vaccination (A/H1N1: 39.9 (32.4, 49.1) vs. 33.0 (26.7, 40.7), p = 0.178; A/H3N2: 92.2 (82.8, 102.7) vs. 82.0 (73.8, 91.2), p = 0.091; B: 15.8 (13.9, 17.9) vs. 14.4 (12.8, 16.3), p = 0.092), respectively. However, in pre-specified subgroup analyses, post-vaccination titers for morning versus afternoon vaccination in the 65-75 years subgroup were (A/H1N1): 49.5 (36.7, 66.6) vs. 32.9 (24.7, 43.9), p = 0.050; (A/H3N2): 93.5 (80.6, 108.5) vs. 73.1 (62.9, 84.9), p = 0.021; (B): 16.6 (13.8, 20.1) vs. 14.4 (12.3, 17.0), p = 0.095, respectively. Among females, antibody titers for morning versus afternoon vaccination were (A/H1N1): 46.9 (35.6, 61.8) vs. 31.1 (23.8, 40.7), p = 0.030; (A/H3N2): 96.0 (83.5, 110.3) vs. 84.7 (74.4, 96.5), p = 0.176; (B): 14.8 (12.7, 17.3) vs. 13.0 (11.3, 14.9), p = 0.061, respectively. In the 50-60 years old subgroup and males, there were no significant differences between morning and afternoon vaccination. CONCLUSIONS: Morning vaccination may enhance the immunogenicity to influenza vaccine in adults aged over 65 and women. An intervention to modify vaccination programs to vaccinate older individuals in the morning is simple, cost free and feasible in most health systems.

SELECTION OF CITATIONS
SEARCH DETAIL