Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
ChemMedChem ; 16(1): 187-198, 2021 01 08.
Article in English | MEDLINE | ID: mdl-32716144

ABSTRACT

Thanks to the widespread use and safety profile of donepezil (1) in the treatment of Alzheimer's disease (AD), one of the most widely adopted multi-target-directed ligand (MTDL) design strategies is to modify its molecular structure by linking a second fragment carrying an additional AD-relevant biological property. Herein, supported by a proposed combination therapy of 1 and the quinone drug idebenone, we rationally designed novel 1-based MTDLs targeting Aß and oxidative pathways. By exploiting a bioisosteric replacement of the indanone core of 1 with a 1,4-naphthoquinone, we ended up with a series of highly merged derivatives, in principle devoid of the "physicochemical challenge" typical of large hybrid-based MTDLs. A preliminary investigation of their multi-target profile identified 9, which showed a potent and selective butyrylcholinesterase inhibitory activity, together with antioxidant and antiaggregating properties. In addition, it displayed a promising drug-like profile.


Subject(s)
Donepezil/chemistry , Ligands , Neuroprotective Agents/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Drug Design , Humans , Indans/chemistry , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Protein Aggregates/drug effects , Structure-Activity Relationship
2.
Pharmaceutics ; 13(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201089

ABSTRACT

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

3.
Org Biomol Chem ; 8(12): 2683-92, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20440429

ABSTRACT

G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy has been used to study G4-DNAs, is extremely high. However, with very few exceptions, these investigations use an empirical interpretation of CD spectra. In this interpretation two basic types of CD spectra have been associated to a single specific difference in the features of the strand folding, i.e. the relative orientation of the strands, "parallel" (all strands have the same 5' to 3' orientation) or "antiparallel". Different examples taken from the literature where the empirical interpretation is not followed or is meaningless are presented and discussed. Furthermore, the case of quadruplexes formed by monomeric guanosine derivatives, where there is no strand connecting the adjacent quartets and the definition parallel/antiparallel strands cannot apply, will be discussed. The different spectral features observed for different G-quadruplexes is rationalised in terms of chromophores responsible for the electronic transitions. A simplified exciton coupling approach or more refined QM calculations allow to interpret the different CD features in terms of different stacking orientation (head-to-tail, head-to-head, tail-to-tail) between adjacent G-quartets irrespectively of the relative orientation of the stands (parallel/antiparallel).


Subject(s)
Circular Dichroism , DNA/chemistry , G-Quadruplexes , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation
4.
Future Med Chem ; 9(10): 995-1013, 2017 06.
Article in English | MEDLINE | ID: mdl-28632448

ABSTRACT

Alzheimer's disease represents an enormous global burden in terms of human suffering and economic cost. To tackle the current lack of effective drugs and the continuous clinical trial failures might require a shift from the prevailing paradigm targeting pathogenesis to the one targeting neural stem cells (NSCs) regeneration. In this context, small molecules have come to the forefront for their potential to manipulate NSCs, provide therapeutic tools and unveil NSCs biology. Classically, these molecules have been generated either by target-based or phenotypic approaches. To circumvent specific liabilities, nanomedicines emerge as a feasible alternative. However, this review is not intended to be comprehensive. Its purpose is to focus on recent examples that could accelerate development of neuroregenerative drugs against Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Drug Discovery , Neuroprotective Agents/pharmacology , Humans , Molecular Structure , Nerve Regeneration/drug effects , Neuroprotective Agents/chemistry
5.
Chem Commun (Camb) ; 51(58): 11677-80, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26102583

ABSTRACT

We report on the synthesis and self-assembly of three novel lipophilic guanosine derivatives exposing a ferrocene moiety in the C(5') position of the sugar unit. Their self-association in solution, and at the solid/liquid interface, can be tuned by varying the size and nature of the C(8)-substituent, leading to the generation of either G-ribbons, lamellar G-dimer based arrays or the G4 cation-free architectures.


Subject(s)
Ferrous Compounds/chemistry , Guanosine/chemistry , Hydrogen Bonding , Metallocenes
6.
Chem Commun (Camb) ; 46(25): 4493-5, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20485778

ABSTRACT

STM study of the self-assembly at the solid-liquid interface of substituted guanines exposing in the N(9)-position alkyl side chains with different lengths revealed the formation of distinct crystalline nanopatterns.


Subject(s)
Guanine/analogs & derivatives , Guanine/chemistry , Nanostructures/chemistry , Guanine/chemical synthesis , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Microscopy, Scanning Tunneling , Molecular Structure , Particle Size , Stereoisomerism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL