Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Plants (Basel) ; 12(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376002

ABSTRACT

Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper tuberculatum Jacq. (EOPT) against strains carrying different mechanisms of antibiotic resistance. Phytochemical analysis was performed using gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of EOPT and its ability to inhibit antibiotic resistance was evaluated through the broth microdilution method. The GC-MS analysis identified 99.59% of the constituents, with ß-pinene (31.51%), α-pinene (28.38%), and ß-cis-ocimene (20.22%) being identified as major constituents. The minimum inhibitory concentration (MIC) of EOPT was determined to assess its antibacterial activity against multidrug-resistant strains of Staphylococcus aureus (IS-58, 1199B, K2068, and K4100). The compound showed a MIC of ≥ 1024 µg/mL, suggesting a lack of intrinsic antibacterial activity. However, when the EOPT was associated with antibiotics and EtBr, a significant decrease in antibiotic resistance was observed, indicating the modulation of efflux pump activity. This evidence was corroborated with the observation of increased fluorescent light emission by the bacterial strains, indicating the involvement of the NorA and MepA efflux pumps. Additionally, the significant potentiation of ampicillin activity against the S. aureus strain K4414 suggests the ß-lactamase inhibitory activity of EOPT. These results suggest that the essential oil from P. tuberculatum fruits has antibiotic-enhancing properties, with a mechanism involving the inhibition of efflux pumps and ß-lactamase in MDR S. aureus strains. These findings provide new perspectives on the potential use of EOPT against antibiotic resistance and highlight the importance of Piper species as sources of bioactive compounds with promising therapeutic activities against MDR bacteria. Nevertheless, further preclinical (in vivo) studies remain necessary to confirm these in vitro-observed results.

2.
Biomed Pharmacother ; 166: 115249, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37597323

ABSTRACT

Edema is one of the obvious indicators of inflammation and a crucial factor to take into account when assessing a substance's capacity to reduce inflammation. We aimed to evaluate the antiedematogenic and anti-inflammatory profile of the hydroethanolic barks extract of Ximenia americana (HEXA). The possible antiedematogenic and anti-inflammatory effect of EHXA (50, 100 mg/kg and 250 mg/kg v.o) was evaluated using the paw edema induced by carrageenan, zymosan, dextran, CFA and by different agents inflammatory (serotonin, histamine, arachidonic acid and PGE2), and pleurisy model induced by carrageenan and its action on IL-1ß and TNF-α levels was also evaluated. HEXA demonstrated a significant antiedematogenic effect at concentrations of 50, 100 and 250 mg/kg on paw edema induced by carrageenan, zymosan and dextran. However, the concentration of 50 mg/kg as standard, demonstrating the effect in the subchronic model, induced CFA with inhibition of 59.06 %. In models of histamine-induced paw edema, HEXA showed inhibition of - 30 min: 40.49 %, 60 min: 44.70 % and 90 min: 48.98 %; serotonin inhibition - 30 min: 57.09 %, 60 min: 66.04 % and 90 min: 61.79 %; arachidonic acid inhibition - 15 min: 36.54 %, 30 min: 51.10 %, 45 min: 50.32 % and 60 min: 76.17 %; and PGE2 inhibition - 15 min: 67.78 %, 30 min: 62.30 %, 45 min: 54.25 % and 60 min: 47.92 %. HEXA significantly reduced (p < 0.01) leukocyte migration in the pleurisy model and reduced TNF-α and IL-1ß levels in pleural lavage (p < 0.0001). The results showed that HEXA has the potential to have an antiedematogenic impact in both acute and chronic inflammation processes, with a putative mode of action including the suppression or regulation of inflammatory mediators.


Subject(s)
Olacaceae , Pleurisy , Arachidonic Acid , Carrageenan , Dextrans , Histamine , Plant Bark , Serotonin , Tumor Necrosis Factor-alpha , Zymosan , Inflammation/chemically induced , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pleurisy/chemically induced , Pleurisy/drug therapy , Dinoprostone , Models, Theoretical , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Plants (Basel) ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365307

ABSTRACT

(1) Background: estragole is a monoterpene found in the essential oils of several aromatic plants, which can be used for several pharmacological activities. The aim of this study was to evaluate the antinociceptive effect of estragole (Es) and its ß-cyclodextrins inclusion complex (Es/ß-CD). (2) Methods: the effects of Es and Es/ß-CD on the central nervous system (CNS) were evaluated through open field and rota-rod assays, and the antinociceptive effect in formalin models, abdominal writhing induced by acetic acid, hot plate, tail flick test and plantar mechanical hyperalgesia. (3) Results: Es and Es/ß-CD showed no alterations on the CNS evaluated parameters and the results suggested there was an antinociceptive action in the formalin, abdominal writhing, hot plate, tail flick tests and plantar mechanical hyperalgesia, proposing the involvement of the nitric oxide, glutamatergic signaling pathways, cyclic guanosine monophosphate and vanilloid pathways. (4) Conclusion: the results suggest that Es and Es/ß-CD have a promising antinociceptive potential as a possible alternative for the pharmacological treatment of pain, also showing that the encapsulation of Es in ß-cyclodextrins probably improves its pharmacological properties, since the complexation process involves much lower amounts of the compound, contributing to better bioavailability and a lower probability of adverse effect development.

4.
Phytomedicine ; 41: 82-95, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29519324

ABSTRACT

BACKGROUND: Inflammation makes up a set of vascularized tissue reactions acting in the defense of the body against harmful stimuli. Natural products are a lower cost alternative with better benefit, often used in popular medicine in the treatment of inflammatory processes. Several species from the genus Croton have scientifically proven anti-inflammatory action. PURPOSE: This study aims to analyze the chemical composition of the Croton campestris A. St.-Hil essential oil (EOCC), derived from fresh leaves, as well as to evaluate the anti-inflammatory potential and the possible mechanisms of action of the EOCC and its constituent ß-caryophyllene. METHODS: The assays were performed in in vivo models of acute and chronic inflammation. Initially, the chemical composition of the EOCC was determined and its oral toxicity was evaluated, followed by the evaluation of its topical antiedematogenic effect through acute and chronic ear edema induced by Croton oil. For the systemic verification of an anti-inflammatory action, the abdominal contortions, formalin test, paw edema induced by carrageenan, dextran, histamine and arachidonic acid models, as well as a peritonitis test, vascular permeability and granuloma assays were performed. RESULTS: The evaluation of the essential oil chemical composition revealed the presence of ß-caryophyllene (15.91%), 1,8-cineol (16.98%) and germacrene-D (14.51%) as its main constituents. The EOCC had no relevant clinical toxicity on oral administration, with an LD50 of more than 5000 mg/kg. The tested substances showed anti-inflammatory action in the abdominal contortions, paw edema induced by carrageenan, dextran, histamine and arachidonic acid models, the formalin test, peritonitis test and vascular permeability; however, ß-caryophyllene had no significant effect on the granuloma assay. This suggests as a hypothesis that both substances tested showed significant influence on the arachidonic acid and histamine pathway reducing edema in these models. CONCLUSION: The tested substances have a clinically safe profile, additionally the EOCC and ß-caryophyllene presented relevant anti-inflammatory activity. This study supports the hypothesis that ß-caryophyllene, in association with other constituents present in the EOCC such as 1,8-cineole, contributed to the anti-inflammatory effect observed, in addition to suggesting that one of the mechanisms of action probably involves the inhibition of cytokines with the involvement of the arachidonic acid and histamine pathways.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Croton/chemistry , Oils, Volatile/chemistry , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Arachidonic Acid/toxicity , Carrageenan/adverse effects , Cyclohexanols/analysis , Dextrans/toxicity , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Edema/chemically induced , Edema/drug therapy , Eucalyptol , Inflammation/drug therapy , Male , Mice , Monoterpenes/analysis , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/analysis , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL