Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Chem ; : 107838, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39342999

ABSTRACT

ADP-ribosylation is an ancient posttranslational modification with exceptional versatility in terms of breadth of modification targets including at least seven different amino acid side chains, various moieties on nucleic acids and a variety of small chemical compounds. The spatiotemporal signalling dynamic of the different modification variations is tightly regulated and depends on the writers, erases, and readers of each type. Amongst these, tyrosine ADP-ribosylation (Tyr-ADPr) has been consistently detected as a novel modification type, but systematic analysis of its potential physiological role, modification establishment and reversal are still lacking. Here we present a reanalysis of recent ADP-ribosylome data and show that Tyr-ADPr sites are conserved and enriched amongst ribosome biogenesis and mRNA processing proteins and that these sites are affected by the status of ARH3 ADP-ribose hydrolase. To facilitate the study of Tyr-ADPr, we establish methodologies for the synthesis of well-defined Tyr-ADPr peptides and with these could show that Tyr-ADPr is reversed both by ARH3 and PARG enzymes. Together, our work lays the foundation for the future exploration of the Tyr-ADPr.

2.
Nat Commun ; 12(1): 4055, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210965

ABSTRACT

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Subject(s)
Carrier Proteins/metabolism , DNA Damage , DNA Repair , Neoplasms/drug therapy , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Serine/metabolism , ADP-Ribosylation , Cell Line , Cell Line, Tumor , Humans , Neoplasms/enzymology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL