Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Archaeol Anthropol Sci ; 13(10): 166, 2021.
Article in English | MEDLINE | ID: mdl-34721705

ABSTRACT

Mineral compounds, as pigments and therapeutics, appeared regularly in the technical and medical texts of the Greco-Roman (G-R) world. We have referred to them as 'G-R medicinal minerals' and we suggest that despite their seeming familiarity, there are actually many unknowns regarding their precise nature and/or purported pharmacological attributes. Earth pigments are part of that group. This paper presents a brief overview of our work over the past twenty years relating to: a. the attempt to locate a select number of them in the places of their origin; b. their chemical/mineralogical characterization; c. the study of their ecology via the identification of the microorganisms surrounding them; d. their testing as antibacterials against known pathogens. In the process, and to fulfil the above, we have developed a novel methodological approach which includes a range of analytical techniques used across many disciplines (mineralogy, geochemistry, DNA extraction and microbiology). This paper focuses on a select number of earth pigments deriving from the island of Melos in the SW Aegean, celebrated in antiquity for its Melian Earth, a white pigment, and asks whether they might display antibacterial activity. We demonstrate that some (but not all) yellow, green and black earth pigments do. We also show that the manner in which they were dispensed (as powders or leachates) was equally important. The results, although preliminary, are informative. Given their use since deep time, earth pigments have never lost their relevance. We suggest that the study of their ecology/mineralogy and potential bioactivity allows for a better understanding of how our perception of them, as both pigments and therapeutics, may have evolved.

2.
Archaeol Anthropol Sci ; 12(10): 243, 2020.
Article in English | MEDLINE | ID: mdl-33088349

ABSTRACT

A Pb-based synthetic mineral referred to as psimythion (pl. psimythia) was manufactured in the Greek world at least since the 6th c BCE and routinely by the 4th c BCE. Theophrastus (On Stones, 56) describes its preparation from metallic Pb suspended over a fermenting liquid. Psimythion is considered the precursor of one of western art's most prominent white pigments, i.e. lead white (basic lead carbonate or synthetic hydrocerussite). However, so far, and for that early period, published analyses of psimythia suggest that they consisted primarily of synthetic cerussite. In this paper, we set out to investigate how it was possible to manufacture pure cerussite, to the near exclusion of other phases. We examined the chemical and mineralogical composition (pXRF/XRD) of a small number of psimythion pellets found within ceramic pots (pyxis) from Athens and Boeotia (5th-4th c BCE) in the collection of the National Archaeological Museum (NAM), Athens. Analyses showed that the NAM pellets consisted primarily of Pb/cerussite with small amounts of Ca (some samples) and a host of metallic trace elements. We highlight the reference in the Theophrastus text to 'spoiled wine' (oxos), rather than 'vinegar', as has been previously assumed, the former including a strong biotic component. We carried out DNA sequencing of the pellets in an attempt to establish presence of microorganisms (Acetic Acid Bacteria). None was found. Subsequently, and as a working hypothesis, we propose a series of (biotic/abiotic) reactions which were likely to have taken place in the liquid and vapour phases and on the metal surface. The hypothesis aims to demonstrate that CO2 would be microbially induced and would increase, as a function of time, resulting in cerussite forming over and above hydrocerussite/other Pb-rich phases. Psimythion has for long been valued as a white pigment. What has perhaps been not adequately appreciated is the depth of empirical understanding from the part of psimythion manufacturers of the reactions between abiotic and biotic components within 'oxos'/pot, as key drivers of minerals synthesis. Ultimately, psimythion manufacture may rest in understanding the nature of 'oxos', antiquity's relatively little researched strongest acid.

3.
J Ethnopharmacol ; 260: 112894, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32348844

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal Earths (MEs), natural aluminosilicate-based substances (largely kaolinite and montmorillonite), have been part of the European pharmacopoeia for well over two millennia; they were used generically as antidotes to 'poison'. AIM OF THE STUDY: To test the antibacterial activity of three Lemnian and three Silesian Earths, medicinal earths in the collection of the Pharmacy Museum of the University of Basel, dating to 16th-18th century and following the methodology outlined in the graphical abstract. To compare them with natural clays of the same composition (reference clays) and synthetic clays (natural clays spiked with elements such as B, Al, Ti and Fe); to assess the parameters which drive antibacterial activity, when present, in each group of samples. MATERIALS AND METHODS: a total of 31 samples are investigated chemically (ICP-MS), mineralogically (both bulk (XRD) and at the nano-sized level (TEM-EDAX)); their organic load (bacterial and fungal) is DNA-sequenced; their bioactivity (MIC60) is tested against Gram-positive, S. aureus and Gram-negative, P. aeruginosa. RESULTS: Reference smectites and kaolinites show no antibacterial activity against the above pathogens. However, the same clays when spiked with B or Al (but not with Ti or Fe) do show antibacterial activity. Of the six MEs, only two are antibacterial against both pathogens. Following DNA sequencing of the bioactive MEs, we show the presence within of a fungal component, Talaromyces sp, a fungus of the family of Trichocomaceae (order Eurotiales), historically associated with Penicillium. Talaromyces is a known producer of the exometabolite bioxanthracene B, and in an earlier publication we have already identified a closely related member of the bioxanthracene group, in association with one of the LE samples examined here. By linking fungus to its exometabolite we suggest that this fungal load may be the key parameter driving antibacterial activity of the MEs. CONCLUSIONS: Antibacterial activity in kaolinite and smectite clays can arise either from spiking natural clays with elements like B and Al, or from an organic (fungal) load found only within some archaeological earths. It cannot be assumed, a priori, that this organic load was acquired randomly and as a result of long-term storage in museum collections. This is because, at least in the case of medicinal Lemnian Earth, there is historical evidence to suggest that the addition of a fungal component may have been deliberate.


Subject(s)
Anti-Bacterial Agents/pharmacology , Archaeology , Bacteria/drug effects , Clay , Fungi , Kaolin , Microbiota , Minerals/pharmacology , Silicates , Anti-Bacterial Agents/history , Anti-Bacterial Agents/isolation & purification , Bacteria/genetics , Bacteria/growth & development , Bacterial Load , Clay/chemistry , Clay/microbiology , Fungi/chemistry , Fungi/genetics , Fungi/growth & development , History, 16th Century , History, 17th Century , History, 18th Century , Kaolin/chemistry , Minerals/history , Minerals/isolation & purification , Nanoparticles , Ribotyping , Silicates/chemistry
4.
J Archaeol Sci Rep ; 22: 179-192, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30775415

ABSTRACT

This paper introduces a holistic approach to the study of Greco-Roman (G-R) lithotherapeutics. These are the minerals or mineral combinations that appear in the medical and scientific literature of the G-R world. It argues that they can best be described not simply in terms of their bulk chemistry/mineralogy but also their ecological microbiology and nanofraction component. It suggests that each individual attribute may have underpinned the bioactivity of the lithotherapeutic as an antibacterial, antifungal or other. We focus on miltos, the highly prized, naturally fine, red iron oxide-based mineral used as a pigment, in boat maintenance, agriculture and medicine. Five samples (four geological (from Kea, N. Cyclades) and one archaeological (from Lemnos, NE Aegean)) of miltos were analyzed with physical and biological science techniques. We show that: a. Kean miltos and Lemnian earth/miltos must have been chemically and mineralogically different; b. Lemnian miltos must have been more effective as an antibacterial against specific pathogens (Gram + and Gram - bacteria) than its Kean counterpart; c. two samples of Kean miltos, although similar, chemically, mineralogically and eco-microbiologically (phylum/class level), nevertheless, displayed different antibacterial action. We suggest that this may constitute proof of microbial ecology playing an important role in effecting bioactivity and, interestingly, at the more specific genus/species level. From the perspective of the historian of G-R science, we suggest that it may have been on account of its bioactivity, rather than simply its 'red-staining' effect, that miltos gained prominent entry into the scientific and medical literature of the G-R world.

SELECTION OF CITATIONS
SEARCH DETAIL