Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Opt Lett ; 48(4): 876-879, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790964

ABSTRACT

We report on a single capture approach for simultaneous incoherent bright field (BF) and laser-based quantitative phase imaging (QPI). Common-path digital holographic microscopy (DHM) is implemented in parallel with BF imaging within the optical path of a commercial optical microscope to achieve spatially multiplexed recording of white light images and digital off-axis holograms, which are subsequently numerically demultiplexed. The performance of the proposed multimodal concept is firstly determined by investigations on microspheres. Then, the application for label-free dual-mode QPI and BF imaging of living pancreatic tumor cells is demonstrated.

2.
Opt Lett ; 48(13): 3615, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390194

ABSTRACT

This publisher's note contains corrections to Opt. Lett.48, 876 (2023)10.1364/OL.478674.


Subject(s)
Holography , Microscopy
3.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36772511

ABSTRACT

Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.


Subject(s)
Holography , Lenses , Microscopy/methods , Lighting , Holography/methods , Algorithms
4.
Opt Lett ; 47(9): 2298-2301, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486785

ABSTRACT

Focimeters, especially manual versions, are the most used ophthalmic devices for dioptric power measurement in optometric clinical care. In the particular case of progressive addition lenses (PALs), they are used to determine far/near vision correction powers, but the user/clinician needs to know at which part of the PAL the measurement must be taken. For this reason, PALs have permanent engravings acting as reference marks to define the far/near vision areas for every PAL design. However, for several reasons these engravings are often difficult to localize and identify, making an accurate dioptric power determination difficult. In this Letter, we present an adaptation of the Gabor holographic principle to a manual focimeter and describe the methodology for the correct localization, visualization, and marking process of the reference engravings in PALs. Experimental results considering different types of PALs are included and the main limitations of the technique are also discussed.


Subject(s)
Engraving and Engravings , Holography , Equipment Design , Eyeglasses , Vision, Ocular
5.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062512

ABSTRACT

Lensless holographic microscope (LHM) is an emerging very promising technology that provides high-quality imaging and analysis of biological samples without utilizing any lens for imaging. Due to its small size and reduced price, LHM can be a very useful tool for the point-of-care diagnosis of diseases, sperm assessment, or microfluidics, among others, not only employed in advanced laboratories but also in poor and/or remote areas. Recently, several LHMs have been reported in the literature. However, complete characterization of their optical parameters remains not much presented yet. Hence, we present a complete analysis of the performance of a compact, reduced cost, and high-resolution LHM. In particular, optical parameters such as lateral and axial resolutions, lateral magnification, and field of view are discussed into detail, comparing the experimental results with the expected theoretical values for different layout configurations. We use high-resolution amplitude and phase test targets and several microbeads to characterize the proposed microscope. This characterization is used to define a balanced and matched setup showing a good compromise between the involved parameters. Finally, such a microscope is utilized for visualization of static, as well as dynamic biosamples.


Subject(s)
Holography , Lenses , Calibration , Cost-Benefit Analysis , Microscopy
6.
Opt Express ; 29(24): 39904-39919, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809345

ABSTRACT

We present a cost-effective, simple, and robust method that enables single-shot quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) using an add-on optical module that can be assembled into the exit port of any regular microscope. The module integrates a beamsplitter (BS) cube (placed in a non-conventional way) for duplicating the output image onto the digital sensor (field of view - FOV - multiplexing), a Stokes lens (SL) for astigmatism compensation (introduced by the BS cube), and an optical quality glass plate over one of the FOV halves for defocusing generation (needed for single-shot TIE algorithm). Altogether, the system provides two laterally separated intensity images that are simultaneously recorded and slightly defocused one to each other, thus enabling accurate QPI by conventional TIE-based algorithms in a single snapshot. The proposed optical module is first calibrated for defining the configuration providing best QPI performance and, second, experimentally validated by using different phase samples (static and dynamic ones). The proposed configuration might be integrated in a compact three-dimensional (3D) printed module and coupled to any conventional microscope for QPI of dynamic transparent samples.

7.
Opt Lett ; 43(5): 1007-1010, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489765

ABSTRACT

Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic, samples showing perfect agreement with the results retrieved from a temporal phase-shifting algorithm.

8.
Appl Opt ; 57(1): A242-A249, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328152

ABSTRACT

A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).


Subject(s)
Holography/methods , Lighting/methods , Microscopy/methods , Calibration , Equipment Design , Holography/instrumentation , Immersion , Microscopy/instrumentation
9.
Opt Lett ; 42(5): 927-930, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28248333

ABSTRACT

Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.

10.
Optom Vis Sci ; 93(5): 534-42, 2016 05.
Article in English | MEDLINE | ID: mdl-26855243

ABSTRACT

PURPOSE: Progressive addition lenses (PALs) are marked with permanent engraved marks (PEMs) at standardized locations. Permanent engraved marks are very useful through the manufacturing and mounting processes, act as locator marks to re-ink the removable marks, and contain useful information about the PAL. However, PEMs are often faint and weak, obscured by scratches, partially occluded, and difficult to recognize on tinted lenses or with antireflection or scratch-resistant coatings. The aim of this article is to present a new generation of portable marking reader based on an extremely simplified concept for visualization and identification of PEMs in PALs. METHODS: Permanent engraved marks on different PALs are visualized using classical Gabor holography as underlying principle. Gabor holography allows phase sample visualization with adjustable magnification and can be implemented in either classical or digital versions. Here, visual Gabor holography is used to provide a magnified defocused image of the PEMs onto a translucent visualization screen where the PEM is clearly identified. RESULTS: Different types of PALs (conventional, personalized, old and scratched, sunglasses, etc.) have been tested to visualize PEMs with the proposed marking reader. The PEMs are visible in every case, and variable magnification factor can be achieved simply moving up and down the PAL in the instrument. In addition, a second illumination wavelength is also tested, showing the applicability of this novel marking reader for different illuminations. CONCLUSIONS: A new concept of marking reader ophthalmic instrument has been presented and validated in the laboratory. The configuration involves only a commercial-grade laser diode and a visualization screen for PEM identification. The instrument is portable, economic, and easy to use, and it can be used for identifying patient's current PAL model and for marking removable PALs again or finding test points regardless of the age of the PAL, its scratches, tints, or coatings.


Subject(s)
Eyeglasses , Fiducial Markers , Holography/instrumentation
11.
Opt Express ; 23(16): 21352-65, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367983

ABSTRACT

We report on a novel algorithm for high-resolution quantitative phase imaging in a new concept of lensless holographic microscope based on single-shot multi-wavelength illumination. This new microscope layout, reported by Noom et al. along the past year and named by us as MISHELF (initials incoming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy, rises from the simultaneous illumination and recording of multiple diffraction patterns in the Fresnel domain. In combination with a novel and fast iterative phase retrieval algorithm, MISHELF microscopy is capable of high-resolution (micron range) phase-retrieved (twin image elimination) biological imaging of dynamic events. In this contribution, MISHELF microscopy is demonstrated through qualitative concept description, algorithm implementation, and experimental validation using both a synthetic object (resolution test target) and a biological sample (swine sperm sample) for the case of three (RGB) illumination wavelengths. The proposed method becomes in an alternative instrument improving the capabilities of existing lensless microscopes.

12.
Sci Rep ; 13(1): 4257, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918618

ABSTRACT

Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances. Here, we present a single-shot technique based on wavelength multiplexing for mitigating these two effects. A multi-illumination laser source (including 3 diode lasers) illuminates the sample and a color digital sensor (conventional RGB color camera) is used to record the wavelength-multiplexed Gabor hologram in a single exposure. The technique is completed by presenting a novel algorithm based on a modified Gerchberg-Saxton kernel to finally retrieve an enhanced quantitative phase image of the sample, enhanced in terms of coherent noise removal and twin image minimization. Experimental validations are performed in a regular Olympus BX-60 upright microscope using a 20X 0.46NA objective lens and considering static (resolution test targets) and dynamic (living spermatozoa) phase samples.

13.
Sci Rep ; 12(1): 12909, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902721

ABSTRACT

Building on Gabor seminal principle, digital in-line holographic microscopy provides efficient means for space-time investigations of large volumes of interest. Thus, it has a pivotal impact on particle tracking that is crucial in advancing various branches of science and technology, e.g., microfluidics and biophysical processes examination (cell motility, migration, interplay etc.). Well-established algorithms often rely on heavily regularized inverse problem modelling and encounter limitations in terms of tracking accuracy, hologram signal-to-noise ratio, accessible object volume, particle concentration and computational burden. This work demonstrates the DarkTrack algorithm-a new approach to versatile, fast, precise, and robust 4D holographic tracking based on deterministic computationally rendered high-contrast dark fields. Its unique capabilities are quantitatively corroborated employing a novel numerical engine for simulating Gabor holographic recording of time-variant volumes filled with predefined dynamic particles. Our solution accounts for multiple scattering and thus it is poised to secure an important gap in holographic particle tracking technology and allow for ground-truth-driven benchmarking and quantitative assessment of tracking algorithms. Proof-of-concept experimental evaluation of DarkTrack is presented via analyzing live spermatozoa. Software supporting both novel numerical holographic engine and DarkTrack algorithm is made open access, which opens new possibilities and sets the stage for democratization of robust holographic 4D particle examination.


Subject(s)
Holography , Microscopy , Algorithms , Signal-To-Noise Ratio , Software
14.
Sci Rep ; 10(1): 13955, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811839

ABSTRACT

Utilizing the refractive index as the endogenous contrast agent to noninvasively study transparent cells is a working principle of emerging quantitative phase imaging (QPI). In this contribution, we propose the Variational Hilbert Quantitative Phase Imaging (VHQPI)-end-to-end purely computational add-on module able to improve performance of a QPI-unit without hardware modifications. The VHQPI, deploying unique merger of tailored variational image decomposition and enhanced Hilbert spiral transform, adaptively provides high quality map of sample-induced phase delay, accepting particularly wide range of input single-shot interferograms (from off-axis to quasi on-axis configurations). It especially promotes high space-bandwidth-product QPI configurations alleviating the spectral overlapping problem. The VHQPI is tailored to deal with cumbersome interference patterns related to detailed locally varying biological objects with possibly high dynamic range of phase and relatively low carrier. In post-processing, the slowly varying phase-term associated with the instrumental optical aberrations is eliminated upon variational analysis to further boost the phase-imaging capabilities. The VHQPI is thoroughly studied employing numerical simulations and successfully validated using static and dynamic cells phase-analysis. It compares favorably with other single-shot phase reconstruction techniques based on the Fourier and Hilbert-Huang transforms, both in terms of visual inspection and quantitative evaluation, potentially opening up new possibilities in QPI.

15.
Sci Rep ; 10(1): 21644, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33277532

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
J Biomed Opt ; 24(9): 1-8, 2019 09.
Article in English | MEDLINE | ID: mdl-31522487

ABSTRACT

Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of holograms, a π-hologram is generated with reduced background and improved modulation of interference fringes. These features determine superior phase retrieval quality, obtained by employing the Hilbert spiral transform on the π-hologram, as compared with a single low-quality (low signal-to-noise ratio) hologram analysis. In addition, π-SMIM enables accurate in-vivo analysis of high dynamic range phase objects, otherwise measurable only in static regime using time-consuming phase-shifting. The technique has been validated utilizing a 20 × / 0.46 NA objective in a regular Olympus BX-60 upright microscope for QPI of different lines of prostate cancer cells and flowing microbeads.


Subject(s)
Holography/methods , Image Processing, Computer-Assisted/methods , Microscopy, Interference/methods , Algorithms , Cell Line, Tumor , Humans , Male , Prostatic Neoplasms/pathology
17.
Sci Rep ; 7: 43291, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28233829

ABSTRACT

We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (µm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

18.
J Biomed Opt ; 21(10): 106007, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27786343

ABSTRACT

We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase shifting algorithm instead of off-axis holographic recording to recover the sample's phase information but improves phase reconstruction due to coherence noise reduction. In addition, a less restrictive field of view limitation (1/2) is implemented in comparison with our previously reported scheme (1/3). The proposed modification is experimentally validated in a regular Olympus BX-60 upright microscope considering a wide range of samples (resolution test, microbeads, swine sperm cells, red blood cells, and prostate cancer cells).


Subject(s)
Holography/methods , Image Processing, Computer-Assisted/methods , Microscopy, Interference/methods , Algorithms , Animals , Cell Line, Tumor/cytology , Equipment Design , Erythrocytes/cytology , Holography/instrumentation , Humans , Lighting , Male , Microscopy, Interference/instrumentation , Reproducibility of Results , Spermatozoa/cytology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL