Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Dairy Sci ; 98(2): 1325-35, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25497800

ABSTRACT

Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH.


Subject(s)
Cheese , Food Handling/methods , Humidity , Temperature , Ammonia/metabolism , Animals , Cheese/analysis , Color , Odorants/analysis , Penicillium/growth & development , Sensation
2.
J Dairy Sci ; 95(8): 4666-82, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22818481

ABSTRACT

To evaluate the effects of temperature and relative humidity (RH) on microbial and biochemical ripening kinetics, Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces marxianus, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical changes were studied under different ripening temperatures (8, 12, and 16°C) and RH (88, 92, and 98%). The central point runs (12°C, 92% RH) were both reproducible and repeatable, and for each microbial and biochemical parameter, 2 kinetic descriptors were defined. Temperature had significant effects on the growth of both K. marxianus and G. candidum, whereas RH did not affect it. Regardless of the temperature, at 98% RH the specific growth rate of P. camemberti spores was significantly higher [between 2 (8°C) and 106 times (16°C) higher]. However, at 16°C, the appearance of the rind was no longer suitable because mycelia were damaged. Brevibacterium aurantiacum growth depended on both temperature and RH. At 8°C under 88% RH, its growth was restricted (1.3 × 10(7) cfu/g), whereas at 16°C and 98% RH, its growth was favored, reaching 7.9 × 10(9) cfu/g, but the rind had a dark brown color after d 20. Temperature had a significant effect on carbon substrate consumption rates in the core as well as in the rind. In the rind, when temperature was 16°C rather than 8°C, the lactate consumption rate was approximately 2.9 times higher under 88% RH. Whatever the RH, temperature significantly affected the increase in rind pH (from 4.6 to 7.7 ± 0.2). At 8°C, an increase in rind pH was observed between d 6 and 9, whereas at 16°C, it was between d 2 and 3. Temperature and RH affected the increasing rate of the underrind thickness: at 16°C, half of the cheese thickness appeared ripened on d 14 (wrapping day). However, at 98% RH, the underrind was runny. In conclusion, some descriptors, such as yeast growth and the pH in the rind, depended solely on temperature. However, our findings highlight the fact that the interactions between temperature and RH played a role in P. camemberti sporulation, B. aurantiacum growth, carbon substrate consumption rates, and the thickening of the cheese underrind. Moreover, the best ripening conditions to achieve an optimum between microorganism growth and biochemical kinetics were 13°C and 94% RH.


Subject(s)
Brevibacterium/growth & development , Cheese/microbiology , Food Microbiology/methods , Geotrichum/growth & development , Kluyveromyces/growth & development , Penicillium/growth & development , Colony Count, Microbial , Humidity , Hydrogen-Ion Concentration , Lactic Acid/analysis , Lactose/analysis , Pilot Projects , Statistics, Nonparametric , Temperature
3.
J Dairy Sci ; 93(12): 5601-12, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21094731

ABSTRACT

Four gas-permeable wrapping films exhibiting different degrees of water permeability (ranging from 1.6 to 500 g/m(2) per d) were tested to study their effect on soft-mold (Camembert-type) cheese-ripening dynamics compared with unwrapped cheeses. Twenty-three-day trials were performed in 2 laboratory-size (18L) respiratory-ripening cells under controlled temperature (6 ± 0.5°C), relative humidity (75 ± 2%), and carbon dioxide content (0.5 to 1%). The films allowed for a high degree of respiratory activity; no limitation in gas permeability was observed. The wide range of water permeability of the films led to considerable differences in cheese water loss (from 0.5 to 12% on d 23, compared with 15% for unwrapped cheeses), which appeared to be a key factor in controlling cheese-ripening progress. A new relationship between 2 important cheese-ripening descriptors (increase of the cheese core pH and increase of the cheese's creamy underrind thickness) was shown in relation to the water permeability of the wrapping film. High water losses (more than 10 to 12% on d 23) also were observed for unwrapped cheeses, leading to Camembert cheeses that were too dry and poorly ripened. On the other hand, low water losses (from 0.5 to 1% on d 23) led to over-ripening in the cheese underrind, which became runny as a result. Finally, water losses from around 3 to 6% on d 23 led to good ripening dynamics and the best cheese quality. This level of water loss appeared to be ideal in terms of cheese-wrapping film design.


Subject(s)
Cheese/analysis , Food Handling/methods , Animals , Food Technology , Gases , Permeability , Water
4.
J Dairy Sci ; 90(6): 3018-27, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17517744

ABSTRACT

The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH.


Subject(s)
Cheese/analysis , Food Technology/methods , Principal Component Analysis , Spectrophotometry, Infrared/veterinary , Ammonia/analysis , Fermentation , Hydrogen-Ion Concentration , Lactic Acid/analysis , Lactose/analysis , Nitrogen/analysis , Spectrophotometry, Infrared/methods , Time Factors
5.
J Dairy Sci ; 90(5): 2525-37, 2007 May.
Article in English | MEDLINE | ID: mdl-17430957

ABSTRACT

A mechanistic model for Debaryomyces hansenii growth and substrate consumption, lactose conversion into lactate by lactic acid bacteria, as well as lactose and lactate transfer from the core toward the rind was established. The model described the first step (14 d) of the ripening of a smear soft cheese and included the effects of temperature and relative humidity of the ripening chamber on the kinetic parameters. Experimental data were collected from experiments carried out in an aseptic pilot scale ripening chamber under 9 different combinations of temperature (8, 12, and 16 degrees C) and relative humidity (85, 93, and 99%) according to a complete experimental design. The model considered the cheese as a system with 2 compartments (rind and core) and included 5 state evolution equations and 16 parameters. The model succeeded in predicting D. hansenii growth and lactose and lactate concentrations during the first step of ripening (curd deacidification) in core and rind. The nonlinear data-fitting method allowed the determination of tight confidence intervals for the model parameters. The residual standard error (RSE) between model predictions and experimental data was close to the experimental standard deviation between repeated experiments.


Subject(s)
Cheese/microbiology , Food Microbiology , Models, Biological , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Bacteria/growth & development , Cheese/analysis , Humidity , Lactic Acid/metabolism , Lactose/metabolism , Regression Analysis , Temperature , Time Factors
6.
J Dairy Sci ; 89(8): 3250-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16840643

ABSTRACT

Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.


Subject(s)
Carbon Dioxide/analysis , Cheese/analysis , Food Handling/methods , Oxygen/analysis , Brevibacterium/metabolism , Cheese/microbiology , Fermentation , Food Technology , Geotrichum/metabolism , Kluyveromyces/metabolism , Oxygen/chemistry , Penicillium/metabolism , Sensation
7.
J Dairy Sci ; 89(8): 3260-73, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16840644

ABSTRACT

Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.


Subject(s)
Carbon Dioxide/analysis , Cheese/analysis , Cheese/microbiology , Food Handling/methods , Oxygen/analysis , Ammonia/analysis , Brevibacterium/metabolism , Fermentation , Food Technology , Geotrichum/metabolism , Hydrogen-Ion Concentration , Kluyveromyces/metabolism , Penicillium/metabolism
8.
Biotechnol Bioeng ; 40(8): 919-24, 1992 Oct 20.
Article in English | MEDLINE | ID: mdl-18601199

ABSTRACT

Two liquid sampling systems, which are set in the bioreactor and can be sterilized in place, are described. They are composed primarily of an inorganic membrane filter which is either stationary or is set in a rotating motion. These systems have been tested during three types of fermentation processes (ethanol, lactic acid, and polysaccharide productions). The rotating system gave better filtration performances than the stationary sampler which can be used only in alcoholic fermentation. The rotating sampler was coupled with a high-pressure liquid chromatograph for the on-line quantitation of the major compounds present in the filtrate. The results are in good agreement with those obtained from off-line analysis on samples taken manually.

9.
Biotechnol Bioeng ; 31(1): 19-23, 1988 Jan.
Article in English | MEDLINE | ID: mdl-18581558

ABSTRACT

In an attempt to resolve the difficult problem of on-line determination of the viscosity of non-Newtonian fermentation media, the authors have used a vibrating rod sensor mounted on a bioreactor. The sensor signal decreases nonlinearly with increased apparent viscosity. Electronic filtering of the signal damps the interfering effect of aeration and mechanical agitation. Sensor drift is very low (0.03% of measured value per hour). On the rheological level the sensor is primarily an empirical tool that must be specifically calibrated for each fermentation process. Once this is accomplished, it becomes possible to establish linear or second-degree correlations between the electrical signal from the sensor and the essential parameters of the fermentation process in question (pH of a fermented milk during acidification, concentration of extra cellular polysaccharide). In addition, by applying the power law to describe the rheological behavior of fermentation media, we observe a second-order polynomial correlation between the sensor signal and the behavior index (n).

10.
Appl Environ Microbiol ; 59(6): 1893-7, 1993 Jun.
Article in English | MEDLINE | ID: mdl-16348966

ABSTRACT

The production of aroma compounds (acetoin and diacetyl) in fresh unripened cheese by Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 was studied at 30 degrees C at different initial oxygen concentrations (0, 21, 50, and 100% of the medium saturation by oxygen). Regardless of the initial O(2) concentration, maximal production of these compounds was reached only after all the citrate was consumed. Diacetyl and acetoin production was 0.01 and 2.4 mM, respectively, at 0% oxygen. Maximum acetoin concentration reached 5.4 mM at 100% oxygen. Diacetyl production was increased by factors of 2, 6, and 18 at initial oxygen concentrations of 21, 50, and 100%, respectively. The diacetyl/acetoin concentration ratio increased linearly with initial oxygen concentration: it was eight times higher at 100% (3.3%) than at 0% oxygen (0.4%). The effect of oxygen on diacetyl and acetoin production was also shown with other lactococci. At 0% oxygen, specific activity of alpha-acetolactate synthetase (0.15 U/mg) and NADH oxidase (0.04 U/mg) was 3.6 and 5.4 times lower, respectively, than at 100% oxygen. The increasing alpha-acetolactate synthetase activity in the presence of oxygen would explain the higher production of diacetyl and acetoin. The NADH oxidase activity would replace the role of the lactate dehydrogenase, diacetyl reductase, and acetoin reductase in the reoxidation of NADH, allowing accumulation of these two aroma compounds.

SELECTION OF CITATIONS
SEARCH DETAIL