Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Chemistry ; 30(25): e202400559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38411573

ABSTRACT

Dimeric naphthopyranones are known to be biologically active, however, for the corresponding monomeric naphthopyranones this information is still elusive. Here the first enantioselective total synthesis of semi-viriditoxic acid as well as the synthesis of semi-viriditoxin and derivatives is reported. The key intermediate in the synthesis of naphthopyranones is an α,ß-unsaturated δ-lactone, which we synthesized in two different ways (Ghosez-cyclization and Grubbs ring-closing metathesis), while the domino-Michael-Dieckmann reaction of the α,ß-unsaturated δ-lactone with an orsellinic acid derivative is the key reaction. A structure-activity relationship study was performed measuring the cytotoxicity in Burkitt B lymphoma cells (Ramos). The dimeric structure was found to be crucial for biological activity: Only the dimeric naphthopyranones showed cytotoxic and apoptotic activity, whereas the monomers did not display any activity at all.


Subject(s)
Antineoplastic Agents , Burkitt Lymphoma , Structure-Activity Relationship , Cell Line, Tumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/pathology , Stereoisomerism , Apoptosis/drug effects , Lactones/chemistry , Lactones/pharmacology , Lactones/chemical synthesis , Cyclization
2.
Chembiochem ; 24(22): e202300441, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37690998

ABSTRACT

NphB is an aromatic prenyltransferase with high promiscuity for phenolics including flavonoids, isoflavonoids, and plant polyketides. It has been demonstrated that cannabigerolic acid is successfully formed by the reaction catalysed by NphB using geranyl diphosphate and olivetolic acid as substrates. In this study, the substrate specificity of NphB was further determined by using olivetolic acid derivatives as potential substrates for the formation of new synthetic cannabinoids. The derivatives differ in the hydrocarbon chain attached to C6 of the core structure. We performed in silico experiments, including docking of olivetolic acid derivatives, to identify differences in their binding modes. Substrate acceptance was predicted. Based on these results, a library of olivetolic acid derivatives was constructed and synthesized by using different organic synthetic routes. Conversion was monitored in in vitro assays with purified NphB versions. For the substrates leading to a high conversion olivetolic acid-C8, olivetolic acid-C2 and 2-benzyl-4,6-dihydroxybenzoic acid, the products were further elucidated and identified as cannbigerolic acid derivatives. Therefore, these substrates show potential to be adapted in cannabinoid biosynthesis.


Subject(s)
Cannabinoids , Dimethylallyltranstransferase , Dimethylallyltranstransferase/chemistry , Cannabinoids/metabolism , Salicylates/metabolism , Substrate Specificity
3.
Chemistry ; 29(34): e202300941, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37067467

ABSTRACT

A variety of biaryl polyketides exhibit remarkable bioactivities. However, their synthetic accessibility is often challenging. Herein, the enantioselective preparation and synthetic application of an axially chiral 2,2'-biphenol building block is outlined that represents a common motif of these intriguing natural products. Based on the highly regioselective and scalable bromination of a phenol precursor, a coupling process by Lipshutz cuprate oxidation was developed. A copper-mediated deracemization strategy proved to be superior to derivatization or kinetic resolution approaches. Key steps in the overall building block synthesis were rationalized through DFT studies. Utilizing the 2,2'-biphenol, a highly diastereoselective five step synthesis of formerly unknown (+)-di-epi-gonytolide A was developed, thus showcasing the building block's general potential for the synthesis of natural products and their derivatives. En route, the first enantioselective construction of a chromone dimer intermediate was established.

4.
Cell Commun Signal ; 21(1): 275, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798768

ABSTRACT

BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.


Subject(s)
Golgi Apparatus , Prodigiosin , Humans , Prodigiosin/pharmacology , Prodigiosin/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Autophagosomes/metabolism , Autophagy
5.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770729

ABSTRACT

The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents , Biological Products , Chagas Disease , Leishmania donovani , Quinolones , Trypanosoma cruzi , Humans , Escherichia coli , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Biotransformation , Quinolones/pharmacology , Biological Products/pharmacology , Plasmodium falciparum , Parasitic Sensitivity Tests
6.
Chembiochem ; 23(1): e202100467, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34750949

ABSTRACT

Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.


Subject(s)
Carbohydrates/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Carbohydrates/chemical synthesis , Photochemical Processes , Promoter Regions, Genetic/genetics
7.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235018

ABSTRACT

Enzyme immobilization is a technology that enables (bio-)catalysts to be applied in continuous-flow systems. However, there is a plethora of immobilization methods available with individual advantages and disadvantages. Here, we assessed the influence of simple and readily available methods with respect to the performance of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) in continuous-flow conditions. The investigated immobilization strategies cover the unspecific attachment to carriers via epoxides, affinity-based attachment via metal ion affinity, StrepTag™-StrepTactin™ interaction as well as the covalent affinity attachment of an enzyme to a matrix tethered by the HaloTag®. The metal-ion-affinity-based approach outperformed the other methods in terms of immobilized activity and stability under applied conditions. As most enzymes examined today already have a HisTag for purification purposes, effective immobilization may be applied, as simple as a standard purification, if needed.


Subject(s)
Acetaldehyde , Fructose-Bisphosphate Aldolase , Aldehyde-Lyases/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Epoxy Compounds
8.
Chembiochem ; 22(3): 539-547, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32914927

ABSTRACT

Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non-invasive as well as easily tuneable. In the recent past, photo-responsive inducer molecules such as 6-nitropiperonyl-caged IPTG (NP-cIPTG) have been used as optochemical tools for Lac repressor-controlled microbial expression systems. To further expand the applicability of the versatile optochemical on-switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light-mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water-soluble cIPTG derivative proved to be particularly suitable for light-mediated gene expression in these alternative expression hosts.


Subject(s)
Bacillus subtilis/genetics , Lac Repressors/metabolism , Light , Pseudomonas putida/genetics , Thiogalactosides/metabolism , Bacillus subtilis/metabolism , Gene Expression Regulation, Bacterial/genetics , Lac Repressors/chemistry , Photochemical Processes , Pseudomonas putida/metabolism , Solubility , Thiogalactosides/chemistry
9.
J Enzyme Inhib Med Chem ; 36(1): 491-496, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33478277

ABSTRACT

For more than two decades, the development of potent acetylcholinesterase (AChE) inhibitors has been an ongoing task to treat dementia associated with Alzheimer's disease and improve the pharmacokinetic properties of existing drugs. In the present study, we used three docking-based virtual screening approaches to screen both ZINC15 and MolPort databases for synthetic analogs of physostigmine and donepezil, two highly potent AChE inhibitors. We characterised the in vitro inhibitory concentration of 11 compounds, ranging from 14 to 985 µM. The most potent of these compounds, S-I 26, showed a fivefold improved inhibitory concentration in comparison to rivastigmine. Moderate inhibitors carrying novel scaffolds were identified and could be improved for the development of new classes of AChE inhibitors.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Donepezil/pharmacology , Drug Discovery , Physostigmine/pharmacology , Alzheimer Disease/metabolism , Animals , Cholinesterase Inhibitors/chemistry , Donepezil/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Electrophorus , Molecular Docking Simulation , Molecular Structure , Physostigmine/chemistry , Structure-Activity Relationship
10.
Molecules ; 26(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673611

ABSTRACT

Cisplatin-based treatment is the standard of care therapy for urothelial carcinomas. However, complex cisplatin resistance mechanisms limit the success of this approach. Both apoptosis and autophagy have been shown to contribute to this resistance. Prodigiosin, a secondary metabolite from various bacteria, exerts different biological activities including the modulation of these two cellular stress response pathways. We analyzed the effect of prodigiosin on protein levels of different autophagy- and apoptosis-related proteins in cisplatin-sensitive and -resistant urothelial carcinoma cells (UCCs). Furthermore, we investigated the effect on cell viability of prodigiosin alone or in combination with cisplatin. We made use of four different pairs of cisplatin-sensitive and -resistant UCCs. We found that prodigiosin blocked autophagy in UCCs and re-sensitized cisplatin-resistant cells to apoptotic cell death. Furthermore, we found that prodigiosin is a potent anticancer agent with nanomolar IC50 values in all tested UCCs. In combination studies, we observed that prodigiosin sensitized both cisplatin-sensitive and -resistant urothelial carcinoma cell lines to cisplatin treatment with synergistic effects in most tested cell lines. These effects of prodigiosin are at least partially mediated by altering lysosomal function, since we detected reduced activities of cathepsin B and L. We propose that prodigiosin is a promising candidate for the therapy of cisplatin-resistant urothelial carcinomas, either as a single agent or in combinatory therapeutic approaches.


Subject(s)
Antineoplastic Agents/chemistry , Biological Products/chemistry , Prodigiosin/chemistry , Urinary Bladder Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biological Products/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Drug Synergism , Drug Therapy, Combination , Humans , Prodigiosin/pharmacology
11.
Angew Chem Int Ed Engl ; 60(30): 16700-16706, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33856095

ABSTRACT

Establishing one-pot, multi-step protocols combining different types of catalysts is one important goal for increasing efficiency in modern organic synthesis. In particular, the high potential of biocatalysts still needs to be harvested. Based on an in-depth mechanistic investigation of a new organocatalytic protocol employing two catalysts {1,4-diazabicyclo[2.2.2]octane (DABCO); benzoic acid (BzOH)}, a sequence was established providing starting materials for enzymatic refinement (ene reductase; alcohol dehydrogenase): A gram-scale access to a variety of enantiopure key building blocks for natural product syntheses was enabled utilizing up to six catalytic steps within the same reaction vessel.

12.
Angew Chem Int Ed Engl ; 60(43): 23412-23418, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34399441

ABSTRACT

Enantioselective synthesis of bioactive compounds bearing a pyrroloindole framework is often laborious. In contrast, there are several S-adenosyl methionine (SAM)-dependent methyl transferases known for stereo- and regioselective methylation at the C3 position of various indoles, directly leading to the formation of the desired pyrroloindole moiety. Herein, the SAM-dependent methyl transferase PsmD from Streptomyces griseofuscus, a key enzyme in the biosynthesis of physostigmine, is characterized in detail. The biochemical properties of PsmD and its substrate scope were demonstrated. Preparative scale enzymatic methylation including SAM regeneration was achieved for three selected substrates after a design-of-experiment optimization.


Subject(s)
Indoles/chemical synthesis , Methyltransferases/chemistry , Pyrroles/chemical synthesis , Biocatalysis , Kinetics , Methylation , S-Adenosylmethionine/chemistry , Stereoisomerism , Streptomyces/enzymology
13.
Biochem Biophys Res Commun ; 530(1): 155-159, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32828279

ABSTRACT

Flavonoids are generally glycosylated, and the glycan moieties of flavonoid glycosides are known to greatly affect their physicochemical and biological properties. Thus, the development of a variety of tools for glycan remodeling of flavonoid glycosides is highly desired. An endo-ß-N-acetylglucosaminidase mutant Endo-CC N180H, which is developed as an excellent chemoenzymatic tool for creating sialylglycoproteins, was employed for the glycosylation of flavonoids. Endo-CC N180H transferred the sialyl biantennary glycans from the sialylglyco peptide to pNP-GlcNAc and narigenin-7-O-glucoside. The kinetic parameters of Endo-CC N180H towards SGP and pNP-GlcNAc were determined. Flavonoid glucosides harboring a 1,3-diol structure in the glucose moieties acted as substrates of Endo-CC N180H. We proposed that the sialyl biantennary glycan transfer to the flavonoid by Endo-CC N180H could pave the way for the improvement of the inherent biological functions of the flavonoids and creation of novel flavonoid glycoside derivatives for future human health benefits including foods and drugs.


Subject(s)
Acetylglucosaminidase/metabolism , Agaricales/metabolism , Flavanones/metabolism , Fungal Proteins/metabolism , Glucosides/metabolism , Acetylglucosaminidase/genetics , Agaricales/genetics , Flavanones/genetics , Fungal Proteins/genetics , Glucosides/genetics , Glycosylation , Point Mutation , Substrate Specificity
14.
Chemistry ; 26(34): 7556-7562, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32104930

ABSTRACT

The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(µ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(µ-oxo) dicopper(III) species [Cu2 (µ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.

15.
Glycoconj J ; 37(4): 457-470, 2020 08.
Article in English | MEDLINE | ID: mdl-32367478

ABSTRACT

The Thomsen-Friedenreich-antigen, Gal(ß1-3)GalNAc(α1-O-Ser/Thr (TF-antigen), is presented on the surface of most human cancer cell types. Its interaction with galectin 1 and galectin 3 leads to tumor cell aggregation and promotes cancer metastasis and T-cell apoptosis in epithelial tissue. To further explore multivalent binding between the TF-antigen and galectin-3, the TF-antigen was enzymatically synthesized in high yields with GalNAc(α1-EG3-azide as the acceptor substrate by use of the glycosynthase BgaC/Glu233Gly. Subsequently, it was coupled to alkynyl-functionalized bovine serum albumin via a copper(I)-catalyzed alkyne-azide cycloaddition. This procedure yielded neo-glycoproteins with tunable glycan multivalency for binding studies. Glycan densities between 2 and 53 glycan residues per protein molecule were obtained by regulated alkynyl-modification of the lysine residues of BSA. The number of coupled glycans was quantified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and a trinitrobenzene sulfonic acid assay. The binding efficiency of the neo-glycoproteins with human galectin-3 and the effect of multivalency was investigated and assessed using an enzyme-linked lectin assay. Immobilized neo-glycoproteins of all modification densities showed binding of Gal-3 with increasing glycan density. However, multivalent glycan presentation did not result in a higher binding affinity. In contrast, inhibition of Gal-3 binding to asialofetuin was effective. The relative inhibitory potency was increased by a factor of 142 for neo-glycoproteins displaying 10 glycans/protein in contrast to highly decorated inhibitors with only 2-fold increase. In summary, the functionality of BSA-based neo-glycoproteins presenting the TF-antigen as multivalent inhibitors for Gal-3 was demonstrated.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/chemistry , Antigens, Tumor-Associated, Carbohydrate/metabolism , Blood Proteins/metabolism , Galectins/metabolism , Glycoproteins/chemical synthesis , Binding, Competitive , Blood Proteins/genetics , Catalysis , Copper/chemistry , Cycloaddition Reaction , Galectins/genetics , Glycoproteins/metabolism , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Immunoenzyme Techniques/methods , Serum Albumin, Bovine/chemistry , beta-Galactosidase/metabolism
16.
J Org Chem ; 85(4): 1894-1905, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31905290

ABSTRACT

Herein we show a novel approach toward the allylation of indoles. Thereby, we explore a class of bench-stable allylboronates and fine-tune their reactivity. The allylations of different substituted indoles proceed with negligible diastereo- and excellent enantioselectivities. This surprising selectivity (up to 99:1 er, up to ≈60:40 dr) is rationalized by DFT calculations.

17.
Angew Chem Int Ed Engl ; 59(42): 18709-18716, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32567075

ABSTRACT

The reactions of α,ß-unsaturated δ-lactones with activated dienes such as 1,3-dimethoxy-1-[(trimethylsilyl)oxy]-1,3-butadiene (Brassard's diene) are barely known in literature and show high potential for the synthesis of isocoumarin moieties. An in-depth investigation of this reaction proved a stepwise mechanism via the vinylogous Michael-products. Subsequent cyclisation and oxidation by LHMDS and DDQ, respectively, provided six mellein derivatives (30-84 %) and four angelicoin derivatives (40-78 %) over three steps. DFT-calculations provide insights into the reaction mechanism and support the theory of a stepwise reaction.

18.
Chembiochem ; 20(7): 949-954, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30537293

ABSTRACT

Phenylpropanoids and phenylpropanoid-derived plant polyphenols find numerous applications in the food and pharmaceutical industries. In recent years, several microbial platform organisms have been engineered towards producing such compounds. However, for the most part, microbial (poly)phenol production is inspired by nature, so naturally occurring compounds have predominantly been produced to date. Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding monolignols. The performed biotransformations showed that this strain is able to catalyze the stepwise reduction of chemically interesting unnatural phenylpropenoic acids such as 3,4,5-trimethoxycinnamic acid, 5-bromoferulic acid, 2-nitroferulic acid, and a "bicyclic" p-coumaric acid derivative, in addition to six naturally occurring phenylpropenoic acids.


Subject(s)
Escherichia coli/metabolism , Phenylpropionates/metabolism , Propanols/metabolism , Alcohol Oxidoreductases/genetics , Aldehyde Oxidoreductases/genetics , Ammonia-Lyases/genetics , Coenzyme A Ligases/genetics , Escherichia coli/genetics , Metabolic Engineering/methods , Naphthols/metabolism , Petroselinum/enzymology , Phenols/metabolism , Rhodobacter sphaeroides/enzymology , Zea mays/enzymology
19.
Bioorg Med Chem ; 27(13): 2991-2997, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31072649

ABSTRACT

The development of the first enantioselective total synthesis of altersolanol N is reported. The decisive step of the synthesis is the enantioselective formation of the tetrahydroanthraquinone nucleus by a [4 + 2]-cycloaddition in high yield and with excellent diastereo- and enantioselectivity (>95:5 dr and 95:5 er). In addition, a demanding selective monoacetylation of the OH group at the C-2 position was achieved: an epoxide ring opening with the participation of a neighbouring acetyl group could be established. The route proved to be an efficient alternative to also access enantiomerically pure altersolanol A.


Subject(s)
Anthraquinones/chemical synthesis , Anthraquinones/chemistry , Molecular Structure , Stereoisomerism
20.
Chembiochem ; 19(14): 1545-1552, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29719131

ABSTRACT

Prodiginines are a group of naturally occurring pyrrole alkaloids produced by various microorganisms and known for their broad biological activities. The production of nature-inspired cyclic prodiginines was enabled by combining organic synthesis with a mutasynthesis approach based on the GRAS (generally recognized as safe) certified host strain Pseudomonas putida KT2440. The newly prepared prodiginines exerted antimicrobial effects against relevant alternative biotechnological microbial hosts whereas P. putida itself exhibited remarkable tolerance against all tested prodiginines, thus corroborating the bacterium's exceptional suitability as a mutasynthesis host for the production of these cytotoxic secondary metabolites. Moreover, the produced cyclic prodiginines proved to be autophagy modulators in human breast cancer cells. One promising cyclic prodiginine derivative stood out, being twice as potent as prodigiosin, the most prominent member of the prodiginine family, and its synthetic derivative obatoclax mesylate.

SELECTION OF CITATIONS
SEARCH DETAIL