Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34990590

ABSTRACT

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Subject(s)
Broadly Neutralizing Antibodies/genetics , Hepacivirus/immunology , Hepatitis C Antibodies/genetics , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Epitopes , Female , Genotype , Hepacivirus/genetics , Hepatitis C/immunology , Hepatitis C Antibodies/chemistry , Hepatitis C Antibodies/immunology , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged , Mutation , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
2.
Nature ; 595(7868): 596-599, 2021 07.
Article in English | MEDLINE | ID: mdl-34234347

ABSTRACT

Biomolecular condensates have emerged as an important subcellular organizing principle1. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm2,3. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation4,5. Here we report that the steroidal alkaloid cyclopamine and its chemical analogue A3E inhibit RSV replication by disorganizing and hardening IB condensates. The actions of cyclopamine and A3E were blocked by a point mutation in the RSV transcription factor M2-1. IB disorganization occurred within minutes, which suggests that these molecules directly act on the liquid properties of the IBs. A3E and cyclopamine inhibit RSV in the lungs of infected mice and are condensate-targeting drug-like small molecules that have in vivo activity. Our data show that condensate-hardening drugs may enable the pharmacological modulation of not only many previously undruggable targets in viral replication but also transcription factors at cancer-driving super-enhancers6.


Subject(s)
Biomolecular Condensates/virology , Respiratory Syncytial Virus, Human/drug effects , Veratrum Alkaloids/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Female , Humans , Inclusion Bodies , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus, Human/physiology , Transcription Factors , Viral Proteins
3.
PLoS Pathog ; 20(4): e1012163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648214

ABSTRACT

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.


Subject(s)
Coronavirus , Genome, Viral , Nidovirales , Phylogeny , Animals , Nidovirales/genetics , Coronavirus/genetics , Coronavirus/classification , Vertebrates/virology , Vertebrates/genetics , Fishes/virology , Evolution, Molecular , Data Mining , Nidovirales Infections/virology , Nidovirales Infections/genetics
4.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38319104

ABSTRACT

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Subject(s)
Genetic Fitness , Hepacivirus , Hepatocytes , Host Microbial Interactions , Immunity, Innate , Mutation , Humans , Cells, Cultured , Endoplasmic Reticulum Stress , Genetic Fitness/genetics , Genetic Fitness/immunology , Hepacivirus/genetics , Hepacivirus/growth & development , Hepacivirus/immunology , Hepacivirus/physiology , Hepatitis C/immunology , Hepatitis C/virology , Hepatocytes/immunology , Hepatocytes/virology , Host Microbial Interactions/immunology , MicroRNAs/metabolism , Serial Passage , Unfolded Protein Response , Viral Tropism , Virion/growth & development , Virion/metabolism , Virus Replication/genetics , Virus Replication/immunology
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131898

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
6.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38319076

ABSTRACT

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Thiazoles , Triterpenes , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Drug Repositioning , NF-E2-Related Factor 2/metabolism , Coronavirus 229E, Human/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
7.
Infection ; 52(2): 513-524, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37924472

ABSTRACT

PURPOSE: Post-acute sequelae of COVID-19 (PASC) affect approximately 10% of convalescent patients. The spectrum of symptoms is broad and heterogeneous with fatigue being the most often reported sequela. Easily accessible blood biomarkers to determine PASC severity are lacking. Thus, our study aimed to correlate immune phenotypes with PASC across the severity spectrum of COVID-19. METHODS: A total of 176 originally immunonaïve, convalescent COVID-19 patients from a prospective cohort during the first pandemic phase were stratified by initial disease severity and underwent clinical, psychosocial, and immune phenotyping around 10 weeks after first COVID-19 symptoms. COVID-19-associated fatigue dynamics were assessed and related to clinical and immune phenotypes. RESULTS: Fatigue and severe fatigue were commonly reported irrespective of initial COVID-19 severity or organ-specific PASC. A clinically relevant increase in fatigue severity after COVID-19 was detected in all groups. Neutralizing antibody titers were higher in patients with severe acute disease, but no association was found between antibody titers and PASC. While absolute peripheral blood immune cell counts in originally immunonaïve PASC patients did not differ from unexposed controls, peripheral CD3+CD4+ T cell counts were independently correlated with fatigue severity across all strata in multivariable analysis. CONCLUSIONS: Patients were at similar risk of self-reported PASC irrespective of initial disease severity. The independent correlation between fatigue severity and blood T cell phenotypes indicates a possible role of CD4+ T cells in the pathogenesis of post-COVID-19 fatigue, which might serve as a blood biomarker.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Post-Acute COVID-19 Syndrome , COVID-19/complications , Prospective Studies , Phenotype , Disease Progression , Fatigue/etiology
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33811145

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.


Subject(s)
Drug Resistance, Viral/genetics , Mutation , Respiratory Syncytial Viruses/genetics , Animals , Antiviral Agents/toxicity , Chlorocebus aethiops , Drug Resistance, Viral/immunology , Hep G2 Cells , Humans , Palivizumab/toxicity , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/pathogenicity , Reverse Genetics/methods , Vero Cells
9.
Clin Infect Dis ; 77(Suppl 3): S257-S261, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37579208

ABSTRACT

For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/genetics , Reproducibility of Results
10.
J Virol ; 96(7): e0199521, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35297672

ABSTRACT

C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.


Subject(s)
Hepacivirus , Hepatitis C , Lectins, C-Type , Receptors, Cell Surface , Antiviral Agents/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Virus Replication
11.
Liver Int ; 43(10): 2116-2129, 2023 10.
Article in English | MEDLINE | ID: mdl-37366005

ABSTRACT

BACKGROUND: Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are a valuable model to investigate host-pathogen interactions of hepatitis viruses in a mature and authentic environment. Here, we investigate the susceptibility of HLCs to the hepatitis delta virus (HDV). METHODS: We differentiated hPSC into HLCs, and inoculated them with infectious HDV produced in Huh7NTCP . HDV infection and cellular response was monitored by RTqPCR and immunostaining. RESULTS: Cells undergoing hepatic differentiation become susceptible to HDV after acquiring expression of the viral receptor Na+ -taurocholate co-transporting polypeptide (NTCP) during hepatic specification. Inoculation of HLCs with HDV leads to detection of intracellular HDV RNA and accumulation of the HDV antigen in the cells. Upon infection, the HLCs mounted an innate immune response based on induction of the interferons IFNB and L, and upregulation of interferon-stimulated genes. The intensity of this immune response positively correlated with the level of viral replication and was dependant on both the JAK/STAT and NFκB pathway activation. Importantly, this innate immune response did not inhibit HDV replication. However, pre-treatment of the HLCs with IFNα2b reduced viral infection, suggesting that ISGs may limit early stages of infection. Myrcludex efficiently abrogated infection and blocked innate immune activation. Lonafarnib treatment of HDV mono infected HLCs on the other hand led to exacerbated viral replication and innate immune response. CONCLUSION: The HDV in vitro mono-infection model represents a new tool to study HDV replication, its host-pathogen interactions and evaluate new antiviral drugs in cells displaying mature hepatic functions.


Subject(s)
Hepatitis D , Hepatitis Delta Virus , Humans , Hepatitis Delta Virus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis D/drug therapy , Hepatocytes/metabolism , Immunity, Innate , Interferons/therapeutic use , Stem Cells , Virus Replication , Hepatitis B virus/genetics
12.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36422061

ABSTRACT

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Antiviral Agents/chemistry , SARS-CoV-2 , Plant Extracts
13.
Antimicrob Agents Chemother ; 66(12): e0103222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36346232

ABSTRACT

Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/genetics , Antiviral Agents/therapeutic use , Lung
14.
J Virol ; 95(10)2021 04 26.
Article in English | MEDLINE | ID: mdl-33658347

ABSTRACT

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

15.
PLoS Pathog ; 16(6): e1008554, 2020 06.
Article in English | MEDLINE | ID: mdl-32542055

ABSTRACT

Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/ß hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Hepacivirus/physiology , Lipase/metabolism , Lipid Droplets/metabolism , Lipolysis , Virus Assembly/physiology , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Cell Line, Tumor , Enzyme Activation , HEK293 Cells , Humans , Lipase/genetics , Lipid Droplets/virology , Triglycerides/genetics , Triglycerides/metabolism
16.
Chemistry ; 28(10): e202104484, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34990513

ABSTRACT

Structure elucidation and total synthesis of five unprecedented terpenoid-alkaloids, the sandacrabins, are reported, alongside with the first description of their producing organism Sandaracinus defensii MSr10575, which expands the Sandaracineae family by only its second member. The genome sequence of S. defensii as presented in this study was utilized to identify enzymes responsible for sandacrabin formation, whereby dimethylbenzimidazol, deriving from cobalamin biosynthesis, was identified as key intermediate. Biological activity profiling revealed that all sandacrabins except congener A exhibit potent antiviral activity against the human pathogenic coronavirus HCoV229E in the three digit nanomolar range. Investigation of the underlying mode of action discloses that the sandacrabins inhibit the SARS-CoV-2 RNA-dependent RNA polymerase complex, highlighting them as structurally distinct non-nucleoside RNA synthesis inhibitors. The observed segregation between cell toxicity at higher concentrations and viral inhibition opens the possibility for their medicinal chemistry optimization towards selective inhibitors.


Subject(s)
Antiviral Agents , DNA-Directed RNA Polymerases/antagonists & inhibitors , Myxococcales/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology
17.
BMC Pulm Med ; 22(1): 88, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35291998

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in infants. Globally, RSV is responsible for approximately 3.2 million hospital admissions and about 60,000 in-hospital deaths per year. METHODS: Infection with RespIratory Syncytial Virus (IRIS) is an observational, multi-centre study enrolling infants with severe RSV infection and healthy controls. Inclusion criteria are age between 0 and 36 months and hospitalisation due to RSV infection at three German sites. Exclusion criteria are premature birth, congenital or acquired bronchopulmonary or cardiac diseases, and immunodeficiency. Healthy control probands are enrolled via recruitment of patients undergoing routine surgical procedures. Blood and respiratory specimens are collected upon admission, and RSV and other pathogens are analysed by multiplex polymerase chain reaction. Different biomaterials, including plasma, nasal lining fluid, blood cells, DNA, and RNA specimens, are sampled in a dedicated biobank. Detailed information on demographic characteristics and medical history is recorded, and comprehensive clinical data, including vital signs, medication, and interventions. DISCUSSION: The IRIS study aims to discover host and viral factors controlling RSV disease courses in infants. The approach including multi-omics characterisation in clinically well-characterized children with RSV bronchiolitis seeks to improve our understanding of the immune response against this virus. It may disclose novel diagnostic and treatment approaches for respiratory infections in infants. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04925310. Registered 01 October 2021-Retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04925310?cond=NCT04925310&draw=2&rank=1.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Child , Child, Preschool , Hospitalization , Humans , Infant , Infant, Newborn , Prospective Studies , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Viruses , Respiratory Tract Infections/diagnosis
18.
Article in German | MEDLINE | ID: mdl-35015104

ABSTRACT

The incidence of hepatitis C virus (HCV) infections remains high even more than 10 years after approval of the first direct-acting antivirals for treatment of hepatitis C. In some countries, more people are newly infected with the virus than patients cured by antiviral therapy. The development of a prophylactic vaccine could prevent virus transmission and thereby make a significant contribution to control the global burden of this disease. In this article, we review the unique challenges and current approaches to HCV vaccine development.HCV is a highly diverse and versatile virus that mostly escapes the immune system and establishes chronic infections. However, up to one third of the exposed individuals can spontaneously resolve HCV infections, which indicates that protective immunity can be achieved. Numerous studies on determinants of protective immunity against HCV show an increasingly complete picture of what a vaccine must achieve. It is very likely that both strong neutralizing antibodies and powerful cytotoxic T cells are needed to reliably protect against chronic HCV infection. The key question is which approaches allow maturation of particularly broadly effective antibodies and T cells. This will be necessary to protect against the high number of different HCV variants. The recent successes of mRNA vaccines open new doors for HCV vaccine research and development. Combined with a deeper understanding of the structure and function of the viral envelope proteins, the identification of cross-protective antibody and T­cell epitopes as well as the use of standardized methods to quantify the effectiveness of vaccine candidates, new perspectives arise for the development of a vaccine.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Viral Hepatitis Vaccines , Viral Vaccines , Antiviral Agents , Germany , Hepacivirus/genetics , Hepatitis C/prevention & control , Hepatitis C Antibodies , Humans
19.
Angew Chem Int Ed Engl ; 61(52): e202212946, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36208117

ABSTRACT

During our search for novel myxobacterial natural products, we discovered the thiamyxins: thiazole- and thiazoline-rich non-ribosomal peptide-polyketide hybrids with potent antiviral activity. We isolated four congeners of this unprecedented natural product family with the non-cyclized thiamyxin D fused to a glycerol unit at the C-terminus. Alongside their structure elucidation, we present a concise biosynthesis model based on biosynthetic gene cluster analysis and isotopically labelled precursor feeding. We report incorporation of a 2-(hydroxymethyl)-4-methylpent-3-enoic acid moiety by a GCN5-related N-acetyltransferase-like decarboxylase domain featuring polyketide synthase. The thiamyxins show potent inhibition of RNA viruses in cell culture models of corona, zika and dengue virus infection. Their potency up to a half maximal inhibitory concentration of 560 nM combined with milder cytotoxic effects on human cell lines indicate the potential for further development of the thiamyxins.


Subject(s)
Myxococcales , Polyketides , Zika Virus Infection , Zika Virus , Humans , Myxococcales/metabolism , RNA , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Multigene Family , Zika Virus Infection/genetics
20.
Gut ; 70(9): 1734-1745, 2021 09.
Article in English | MEDLINE | ID: mdl-33323394

ABSTRACT

OBJECTIVE: Neutralising antibodies are key effectors of infection-induced and vaccine-induced immunity. Quantification of antibodies' breadth and potency is critical for understanding the mechanisms of protection and for prioritisation of vaccines. Here, we used a unique collection of human specimens and HCV strains to develop HCV reference viruses for quantification of neutralising antibodies, and to investigate viral functional diversity. DESIGN: We profiled neutralisation potency of polyclonal immunoglobulins from 104 patients infected with HCV genotype (GT) 1-6 across 13 HCV strains representing five viral GTs. Using metric multidimensional scaling, we plotted HCV neutralisation onto neutralisation maps. We employed K-means clustering to guide virus clustering and selecting representative strains. RESULTS: Viruses differed greatly in neutralisation sensitivity, with J6 (GT2a) being most resistant and SA13 (GT5a) being most sensitive. They mapped to six distinct neutralisation clusters, in part composed of viruses from different GTs. There was no correlation between viral neutralisation and genetic distance, indicating functional neutralisation clustering differs from sequence-based clustering. Calibrating reference viruses representing these clusters against purified antibodies from 496 patients infected by GT1 to GT6 viruses readily identified individuals with extraordinary potent and broadly neutralising antibodies. It revealed comparable antibody cross-neutralisation and diversity between specimens from diverse viral GTs, confirming well-balanced reporting of HCV cross-neutralisation across highly diverse human samples. CONCLUSION: Representative isolates from six neutralisation clusters broadly reconstruct the functional HCV neutralisation space. They enable high resolution profiling of HCV neutralisation and they may reflect viral functional and antigenic properties important to consider in HCV vaccine design.


Subject(s)
Antibodies, Neutralizing/blood , Hepacivirus/immunology , Hepatitis C Antibodies/blood , Hepatitis C/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Hepacivirus/genetics , Hepatitis C/virology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology
SELECTION OF CITATIONS
SEARCH DETAIL