Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Chem Eng J ; 4122021 May 15.
Article in English | MEDLINE | ID: mdl-37771372

ABSTRACT

The ability of transition metal chitosan complexes (TMCs) of varying valence and charge to selectively adsorb As(III) and As(V) over their strongest adsorptive competitor, phosphate is examined. Fe(III)-chitosan, Al(III)-chitosan, Ni(II)-chitosan, Cu(II)-chitosan, and Zn(II)-chitosan are synthesized, characterized via Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray Diffractometry (XRD), and their selective sorption capabilities towards As(III) and As(V) in the presence of phosphate are evaluated. It was found that the stability of the metal-chitosan complexes varied, with Al(III)- and Zn(II)-chitosan forming very unstable complexes resulting in precipitation of gibbsite, and Wulfingite and Zincite, respectively. Cu(II)-, Ni(II)-, and Fe(III)-chitosan formed a mixture of monodentate and bidentate complexes. The TMCs which formed the bidentate complex (Cu(II)-, Ni(II)-, and Fe(III)-) showed greater adsorption capability for As(V) in the presence of phosphate. Using the binary separation factor ∝t/c, it can be shown that only Fe(III)-chitosan is selective for As(V) and As(III) over phosphate. Density Functional Theory (DFT) modeling and extended X-ray adsorption fine structure (EXAFS) determined that Fe(III)-chitosan and Ni(II)-chitosan adsorbed As(V) and As(III) via inner-sphere complexation, while Cu(II)-chitosan formed mainly outer-sphere complexes with As(V) and As(III). These differences in complexation likely result in the observed differences in selective adsorption capability towards As(V) and As(III) over phosphate. It is hypothesized that the greater affinity of Fe(III)- and Ni(II)-chitosan towards As(V) and As(III) compared to Cu(II)-chitosan is due to their forming less-stable, more reactive chitosan complexes as predicted by the Irving Williams Series.

2.
Acc Chem Res ; 52(5): 1206-1214, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30969749

ABSTRACT

Persistent and potentially toxic inorganic oxoanions (e.g., arsenic and selenium) are one class of contaminants of concern in drinking water for which treatment technologies must be improved. Effective removal of these oxoanions is made difficult by the varying adsorption affinity of the different oxidation states, as well as the presence of background ions with similar chemical structure and behavior that strongly compete for adsorption sites, greatly reducing removal efficiencies. Recent studies pointing to the negative health effects of inorganic oxoanion contaminants have resulted or are expected to result in new regulations lowering their allowable maximum concentration level (MCL) in drinking water. While these regulations are intended to protect human and environmental health, they must also allow for balanced economic costs. As such, the MCLs are often set at levels that are not as health protective due to high treatment costs that continue to present a significant challenge for small (500-3300 people) to very small (25-500 people) communities. In this Account, we focus on the development of novel cost-effective, sustainable, and efficient multifunctional and selective adsorbents that offer solutions to the above challenges through two platforms: nanoenabled and transition-metal cross-linked chitosan (TMCC) and crystal facet engineered nanometal oxides (NMO). These complementary platforms offer treatment solutions at different scales and flow rates (e.g., in a point-of-use device versus a small-scale community system). Multifunctional adsorbents combine processes that traditionally require multiple steps offering the potential for reducing treatment time and costs. Development of selective adsorbents can greatly increase removal efficiencies of target contaminants by either promoting their adsorption or hindering adsorption of competitive ions. The following sections describe (1) synthesis of novel nanoenabled waste sourced bioadsorbents; (2) development of multifunctional adsorbents to simultaneously photo-oxidize arsenite and adsorb arsenate; (3) development of a selective adsorbent for removal of arsenate and selenite over phosphate; (4) investigations of the conventional wisdom that increased surface area yields increased oxoanion removal using selenium sorption on nanohematite as a case study; and (5) crystal engineering of nanohematite to promote selenite adsorption. The novel technologies developed through these research efforts can serve as templates for the creation of future adsorbents tailored for use targeting other oxoanion contaminants of interest.

3.
Environ Sci Technol ; 54(16): 9769-9790, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32515947

ABSTRACT

Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, overestimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly co-occurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six "target" oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five "competing" co-occurring oxo-anions (phosphate, sulfate, bicarbonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Anions , Kinetics , Phosphates , Water , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 358: 145-154, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29990801

ABSTRACT

A novel multifunctional sorbent material of nano-titanium dioxide-enabled chitosan beads cross-linked with copper (CuTICB) is capable of photo-oxidation of As(III) to the less-toxic and more easily adsorbed As(V) in UV light and selective adsorption of arsenite (As(III)) and arsenate (As(V)) in the presence of phosphate, a strong adsorptive competitor and inhibitor of arsenic removal performance. CuTICB is an attractive sorbent as simultaneous photo-oxidation and adsorption reduces treatment time and cost while selective adsorption improves removal efficiency of arsenic in typical environmental conditions where competitive ions are predominant. In CuTICB, nano-titanium dioxide (n-TiO2) anatase photo-oxidizes As(III) to As(V) through generation of reactive oxygen species. Additionally, Cu-chitosan bidentate crosslinkers form through Lewis acid-base coordinate bonding between Cu(II) and chitosan amine groups resulting in cationic behavior that electrostatically favors As(V) chelation even when phosphate concentrations are orders of magnitude higher. The influence of copper and n-TiO2 loading on arsenic photo-oxidation and selective removal over phosphate was explored to optimize CuTICB design using batch experiments under varying systems conditions. For a system requiring both photo-oxidation and selective adsorption, it was found that copper and n-TiO2 act non-linearly and synergistically, where maximum loadings of both does not yield the optimal selectivity or removal efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL