Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Biol ; 20(1): 246, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329441

ABSTRACT

BACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.


Subject(s)
Ascomycota , Malus , Ascomycota/genetics , Plant Diseases/microbiology , Fungal Genus Venturia , Malus/genetics , Malus/microbiology
2.
J Proteome Res ; 19(4): 1491-1501, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32091901

ABSTRACT

Cephalopods are known to produce an extensive range of secretions including ink, mucus, and venom. Sepiadariidae, a family of small, benthic bobtail squids, are notable for the high volume of viscous slime they emit when stressed. One species, Sepioloidea lineolata (striped pyjama squid), is covered with glands along the perimeter of the ventral mantle, and these structures are hypothesized to be the source of its slime. Using label-free quantitative proteomics, we analyzed five tissue types (dorsal and ventral mantle muscle, dorsal and ventral epithelium, and ventral mantle glands) and the slime from four individuals. In doing so, we were able to determine the relationship between the slime and the tissues as well as highlight proteins that were specifically identified within the slime and ventral mantle glands. A total of 28 proteins were identified to be highly enriched in slime, and these were composed of peptidases and protease inhibitors. Seven of these proteins contained predicted signal peptides, indicating classical secretion, with four proteins having no identifiable domains or similarity to any known proteins. The ventral mantle glands also appear to be the tissue with the closest overall proteomic composition to the slime; therefore, it is likely that the slime originates, at least in part, from these glands.


Subject(s)
Cephalopoda , Decapodiformes , Animals , Bodily Secretions , Humans , Proteins , Proteomics
3.
Mol Plant Microbe Interact ; 32(11): 1463-1467, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31313627

ABSTRACT

Venturia nashicola, the cause of scab disease of Asian pears, is a host-specific, biotrophic fungus. It is restricted to Asia and is regarded as a quarantine threat outside this region. European pear displays nonhost resistance (NHR) to V. nashicola and Asian pears are nonhosts of V. pyrina (the cause of European pear scab disease). The host specificity of these two fungi is likely governed by differences in their effector arsenals, with a subset hypothesized to activate NHR. The Pyrus-Venturia pathosystem provides an opportunity to dissect the underlying genetics of nonhost interactions in this potentially more durable form of resistance. The V. nashicola genome will enable comparisons to other Venturia spp. genomes to identify effectors that potentially activate NHR in the pear scab pathosystem.


Subject(s)
Ascomycota , Genome, Fungal , Pyrus , Ascomycota/genetics , Genome, Fungal/genetics , Host Specificity/genetics , Models, Biological , Plant Diseases/microbiology , Pyrus/microbiology
4.
BMC Plant Biol ; 19(1): 567, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31856719

ABSTRACT

BACKGROUND: Melatonin (N-acetyl-5-methoxytryptamine) in plants, regulates shoot and root growth and alleviates environmental stresses. Melatonin and the phyto-hormone auxin are tryptophan-derived compounds. However, it largely remains controversial as to whether melatonin and auxin act through similar or overlapping signalling and regulatory pathways. RESULTS: Here, we have used a promoter-activation study to demonstrate that, unlike auxin (1-naphthalene acetic acid, NAA), melatonin neither induces Direct repeat 5 DR5 expression in Arabidopsis thaliana roots under normal growth conditions nor suppresses the induction of Alternative oxidase 1a AOX1a in leaves upon Antimycin A treatment, both of which are the hallmarks of auxin action. Additionally, comparative global transcriptome analysis conducted on Arabidopsis treated with melatonin or NAA revealed differences in the number and types of differentially expressed genes. Auxin (4.5 µM) altered the expression of a diverse and large number of genes whereas melatonin at 5 µM had no significant effect but melatonin at 100 µM had a modest effect on transcriptome compared to solvent-treated control. Interestingly, the prominent category of genes differentially expressed upon exposure to melatonin trended towards biotic stress defence pathways while downregulation of key genes related to photosynthesis was observed. CONCLUSION: Together these findings indicate that though they are both indolic compounds, melatonin and auxin act through different pathways to alter gene expression in Arabidopsis thaliana. Furthermore, it appears that effects of melatonin enable Arabidopsis thaliana to prioritize biotic stress defence signalling rather than growth. These findings clear the current confusion in the literature regarding the relationship of melatonin and auxin and also have greater implications of utilizing melatonin for improved plant protection.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Melatonin/pharmacology , Plant Growth Regulators/pharmacology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism
5.
Metabolomics ; 14(10): 133, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30830473

ABSTRACT

INTRODUCTION: The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known. OBJECTIVES: This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism. METHODS: Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol-1) and future, predicted elevated CO2 (eCO2, 650 µmol mol-1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars). RESULTS: The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment. CONCLUSION: This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.


Subject(s)
Aphids/metabolism , Carbon Dioxide/metabolism , Luteovirus/metabolism , Metabolomics , Triticum/metabolism , Virus Diseases/metabolism , Animals , Proton Magnetic Resonance Spectroscopy
6.
Phytopathology ; 108(7): 837-846, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29381450

ABSTRACT

Venturia effusa (syn. Fusicladium effusum), causal agent of pecan scab, is the most prevalent pathogen of pecan (Carya illinoinensis), causing severe yield losses in the southeastern United States. V. effusa is currently known only by its asexual (conidial) stage. However, the degree and distribution of genetic diversity observed within and among populations of V. effusa are typical of a sexually reproducing fungal pathogen, and comparable with other dothideomycetes with a known sexual stage, including the closely related apple scab pathogen, V. inaequalis. Using the mating type (MAT) idiomorphs from V. inaequalis, we identified a single MAT gene, MAT1-1-1, in a draft genome of V. effusa. The MAT1-1-1 locus is flanked by two conserved genes encoding a DNA lyase (APN2) and a hypothetical protein. The MAT locus spanning the flanking genes was amplified and sequenced from a subset of 14 isolates, of which 7 contained MAT1-1-1 and the remaining samples contained MAT1-2-1. A multiplex polymerase chain reaction screen was developed to amplify MAT1-1-1, MAT1-2-1, and a conserved reference gene encoding ß-tubulin, and used to screen 784 monoconidial isolates of V. effusa collected from 11 populations of pecan across the southeastern United States. A hierarchical sampling protocol representing region, orchard, and tree allowed for analysis of MAT structure at different spatial scales. Analysis of this collection revealed the frequency of the MAT idiomorphs is in a 1:1 equilibrium of MAT1-1:MAT1-2. The apparent equilibrium of the MAT idiomorphs provides impetus for a renewed effort to search for the sexual stage of V. effusa. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Subject(s)
Ascomycota/physiology , Genes, Mating Type, Fungal/genetics , Genetic Variation , Ascomycota/genetics , Carya , Genome, Fungal , Genotype , Plant Diseases/microbiology
7.
BMC Genomics ; 18(1): 339, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464870

ABSTRACT

BACKGROUND: Fungal plant pathogens belonging to the genus Venturia cause damaging scab diseases of members of the Rosaceae. In terms of economic impact, the most important of these are V. inaequalis, which infects apple, and V. pirina, which is a pathogen of European pear. Given that Venturia fungi colonise the sub-cuticular space without penetrating plant cells, it is assumed that effectors that contribute to virulence and determination of host range will be secreted into this plant-pathogen interface. Thus the predicted secretomes of a range of isolates of Venturia with distinct host-ranges were interrogated to reveal putative proteins involved in virulence and pathogenicity. RESULTS: Genomes of Venturia pirina (one European pear scab isolate) and Venturia inaequalis (three apple scab, and one loquat scab, isolates) were sequenced and the predicted secretomes of each isolate identified. RNA-Seq was conducted on the apple-specific V. inaequalis isolate Vi1 (in vitro and infected apple leaves) to highlight virulence and pathogenicity components of the secretome. Genes encoding over 600 small secreted proteins (candidate effectors) were identified, most of which are novel to Venturia, with expansion of putative effector families a feature of the genus. Numerous genes with similarity to Leptosphaeria maculans AvrLm6 and the Verticillium spp. Ave1 were identified. Candidates for avirulence effectors with cognate resistance genes involved in race-cultivar specificity were identified, as were putative proteins involved in host-species determination. Candidate effectors were found, on average, to be in regions of relatively low gene-density and in closer proximity to repeats (e.g. transposable elements), compared with core eukaryotic genes. CONCLUSIONS: Comparative secretomics has revealed candidate effectors from Venturia fungal plant pathogens that attack pome fruit. Effectors that are putative determinants of host range were identified; both those that may be involved in race-cultivar and host-species specificity. Since many of the effector candidates are in close proximity to repetitive sequences this may point to a possible mechanism for the effector gene family expansion observed and a route to diversification via transposition and repeat-induced point mutation.


Subject(s)
Ascomycota/genetics , Ascomycota/physiology , Genomics , Host Specificity , Rosaceae/microbiology , Ascomycota/cytology , Ascomycota/pathogenicity , Cell Wall/enzymology , Plant Diseases/microbiology , Virulence
8.
Int J Mol Sci ; 17(9)2016 Sep 03.
Article in English | MEDLINE | ID: mdl-27598152

ABSTRACT

Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.


Subject(s)
Aspergillus nidulans/drug effects , Defensins/pharmacology , Fusarium/drug effects , Nicotiana/chemistry , Osmotic Pressure , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/metabolism , MAP Kinase Signaling System , Mannosyltransferases/genetics , Mannosyltransferases/metabolism
9.
J Proteome Res ; 13(8): 3635-44, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24965097

ABSTRACT

A proteogenomic analysis is presented for Venturia pirina, a fungus that causes scab disease on European pear (Pyrus communis). V. pirina is host-specific, and the infection is thought to be mediated by secreted effector proteins. Currently, only 36 V. pirina proteins are catalogued in GenBank, and the genome sequence is not publicly available. To identify putative effectors, V. pirina was grown in vitro on and in cellophane sheets mimicking its growth in infected leaves. Secreted extracts were analyzed by tandem mass spectrometry, and the data (ProteomeXchange identifier PXD000710) was queried against a protein database generated by combining in silico predicted transcripts with six frame translations of a whole genome sequence of V. pirina (GenBank Accession JEMP00000000 ). We identified 1088 distinct V. pirina protein groups (FDR 1%) including 1085 detected for the first time. Thirty novel (not in silico predicted) proteins were found, of which 14 were identified as potential effectors based on characteristic features of fungal effector protein sequences. We also used evidence from semitryptic peptides at the protein N-terminus to corroborate in silico signal peptide predictions for 22 proteins, including several potential effectors. The analysis highlights the utility of proteogenomics in the study of secreted effectors.


Subject(s)
Ascomycota/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Proteome/genetics , Pyrus/microbiology , Ascomycota/metabolism , Chromatography, Liquid , Databases, Protein , Genomics/methods , Plant Leaves/genetics , Plant Leaves/microbiology , Proteomics/methods , Tandem Mass Spectrometry
10.
PLoS Genet ; 7(8): e1002230, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21876677

ABSTRACT

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Subject(s)
Ascomycota/genetics , Botrytis/genetics , Genome, Fungal , Plant Diseases/microbiology , DNA Transposable Elements , Genes, Fungal , Genomics , Phylogeny , Plant Diseases/genetics , Synteny
11.
Microbiol Spectr ; 11(3): e0421922, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039647

ABSTRACT

Scab, caused by the biotrophic fungal pathogen Venturia inaequalis, is the most economically important disease of apples. During infection, V. inaequalis colonizes the subcuticular host environment, where it develops specialized infection structures called runner hyphae and stromata. These structures are thought to be involved in nutrient acquisition and effector (virulence factor) delivery, but also give rise to conidia that further the infection cycle. Despite their importance, very little is known about how these structures are differentiated. Likewise, nothing is known about how these structures are protected from host defenses or recognition by the host immune system. To better understand these processes, we first performed a glycosidic linkage analysis of sporulating tubular hyphae from V. inaequalis developed in culture. This analysis revealed that the V. inaequalis cell wall is mostly composed of glucans (44%) and mannans (37%), whereas chitin represents a much smaller proportion (4%). Next, we used transcriptomics and confocal laser scanning microscopy to provide insights into the cell wall carbohydrate composition of runner hyphae and stromata. These analyses revealed that, during subcuticular host colonization, genes of V. inaequalis putatively associated with the biosynthesis of immunogenic carbohydrates, such as chitin and ß-1,6-glucan, are downregulated relative to growth in culture, while on the surface of runner hyphae and stromata, chitin is deacetylated to the less-immunogenic carbohydrate chitosan. These changes are anticipated to enable the subcuticular differentiation of runner hyphae and stromata by V. inaequalis, as well as to protect these structures from host defenses and recognition by the host immune system. IMPORTANCE Plant-pathogenic fungi are a major threat to food security. Among these are subcuticular pathogens, which often cause latent asymptomatic infections, making them difficult to control. A key feature of these pathogens is their ability to differentiate specialized subcuticular infection structures that, to date, remain largely understudied. This is typified by Venturia inaequalis, which causes scab, the most economically important disease of apples. In this study, we show that, during subcuticular host colonization, V. inaequalis downregulates genes associated with the biosynthesis of two immunogenic cell wall carbohydrates, chitin and ß-1,6-glucan, and coats its subcuticular infection structures with a less-immunogenic carbohydrate, chitosan. These changes are anticipated to enable host colonization by V. inaequalis and provide a foundation for understanding subcuticular host colonization by other plant-pathogenic fungi. Such an understanding is important, as it may inform the development of novel control strategies against subcuticular plant-pathogenic fungi.


Subject(s)
Ascomycota , Chitosan , Malus , Malus/microbiology , Ascomycota/genetics , Cell Wall , Plant Diseases/microbiology
12.
Front Fungal Biol ; 3: 965781, 2022.
Article in English | MEDLINE | ID: mdl-37746227

ABSTRACT

Plants, fungi, and many other eukaryotes have evolved an RNA interference (RNAi) mechanism that is key for regulating gene expression and the control of pathogens. RNAi inhibits gene expression, in a sequence-specific manner, by recognizing and deploying cognate double-stranded RNA (dsRNA) either from endogenous sources (e.g. pre-micro RNAs) or exogenous origin (e.g. viruses, dsRNA, or small interfering RNAs, siRNAs). Recent studies have demonstrated that fungal pathogens can transfer siRNAs into plant cells to suppress host immunity and aid infection, in a mechanism termed cross-kingdom RNAi. New technologies, based on RNAi are being developed for crop protection against insect pests, viruses, and more recently against fungal pathogens. One example, is host-induced gene silencing (HIGS), which is a mechanism whereby transgenic plants are modified to produce siRNAs or dsRNAs targeting key transcripts of plants, or their pathogens or pests. An alternative gene regulation strategy that also co-opts the silencing machinery is spray-induced gene silencing (SIGS), in which dsRNAs or single-stranded RNAs (ssRNAs) are applied to target genes within a pathogen or pest. Fungi also use their RNA silencing machinery against mycoviruses (fungal viruses) and mycoviruses can deploy virus-encoded suppressors of RNAi (myco-VSRs) as a counter-defence. We propose that myco-VSRs may impact new dsRNA-based management methods, resulting in unintended outcomes, including suppression of management by HIGS or SIGS. Despite a large diversity of mycoviruses being discovered using high throughput sequencing, their biology is poorly understood. In particular, the prevalence of mycoviruses and the cellular effect of their encoded VSRs are under-appreciated when considering the deployment of HIGS and SIGS strategies. This review focuses on mycoviruses, their VSR activities in fungi, and the implications for control of pathogenic fungi using RNAi.

13.
Fungal Biol ; 126(1): 35-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34930557

ABSTRACT

Apple scab, caused by the fungal pathogen Venturia inaequalis, is the most economically important disease of apple (Malus x domestica) worldwide. To develop durable control strategies against this disease, a better understanding of the genetic mechanisms underlying the growth, reproduction, virulence and pathogenicity of V. inaequalis is required. A major bottleneck for the genetic characterization of V. inaequalis is the inability to easily delete or disrupt genes of interest using homologous recombination. Indeed, no gene deletions or disruptions in V. inaequalis have yet been published. Using the melanin biosynthesis pathway gene trihydroxynaphthalene reductase (THN) as a target for inactivation, which has previously been shown to result in a light-brown colony phenotype when transcriptionally silenced using RNA interference, we show, for the first time, that the CRISPR-Cas9 gene editing system can be successfully applied to the apple scab fungus. More specifically, using a CRISPR-Cas9 single guide RNA (sgRNA) targeted to the THN gene, delivered by a single autonomously replicating Golden Gate-compatible plasmid, we were able to identify six of 36 stable transformants with a light-brown phenotype, indicating an ∼16.7% gene inactivation efficiency. Notably, of the six THN mutants, five had an independent mutation. As part of our pipeline, we also report a high-resolution melting (HRM) curve protocol for the rapid detection of CRISPR-Cas9 gene-edited mutants of V. inaequalis. This protocol identified a single base pair deletion mutation in a sample containing only 5% mutant genomic DNA, indicating high sensitivity for mutant screening. In establishing CRISPR-Cas9 as a tool for gene editing in V. inaequalis, we have provided a strong starting point for studies aiming to decipher gene function in this fungus. The associated HRM curve protocol will enable CRISPR-Cas9 transformants to be screened for gene inactivation in a high-throughput and low-cost manner, which will be particularly powerful in cases where the CRISPR-Cas9-mediated gene inactivation efficiency is low.


Subject(s)
Ascomycota , Malus , Ascomycota/genetics , CRISPR-Cas Systems , Fungal Genus Venturia , Gene Editing , Malus/genetics , Plant Diseases
14.
J Bacteriol ; 193(3): 785-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21131493

ABSTRACT

Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Erwinia amylovora/genetics , Genome, Bacterial , Erwinia amylovora/isolation & purification , Molecular Sequence Data , Plant Diseases/microbiology , Rosaceae/microbiology , Sequence Analysis, DNA
15.
Front Microbiol ; 10: 2616, 2019.
Article in English | MEDLINE | ID: mdl-31849848

ABSTRACT

An extensive body of evidence from the last decade has indicated that melatonin enhances plant resistance to a range of biotic and abiotic stressors. This has led to an interest in the application of melatonin in agriculture to reduce negative physiological effects from environmental stresses that affect yield and crop quality. However, there are no reports regarding the effects of melatonin on soil microbial communities under abiotic stress, despite the importance of microbes for plant root health and function. Three agricultural soils associated with different land usage histories (pasture, canola or wheat) were placed under abiotic stress by cadmium (100 or 280 mg kg-1 soil) or salt (4 or 7 g kg-1 soil) and treated with melatonin (0.2 and 4 mg kg-1 soil). Automated Ribosomal Intergenic Spacer Analysis (ARISA) was used to generate Operational Taxonomic Units (OTU) for microbial community analysis in each soil. Significant differences in richness (α diversity) and community structures (ß diversity) were observed between bacterial and fungal assemblages across all three soils, demonstrating the effect of melatonin on soil microbial communities under abiotic stress. The analysis also indicated that the microbial response to melatonin is governed by the type of soil and history. The effects of melatonin on soil microbes need to be regarded in potential future agricultural applications.

16.
Fungal Genet Biol ; 45(10): 1329-39, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18692586

ABSTRACT

Venturia inaequalis is a hemibiotrophic ascomycete that causes apple scab. Germ tubes, from conidia or ascospores, penetrate the leaf or fruit surface directly via appressoria-like swellings; subsequently the hyphae divide laterally to form a stroma between the cuticle and the outer wall of the epidermal cells. This morphological switch can be mimicked by growing the fungus in vitro on cellophane discs. The aim of this work was to identify genes upregulated in planta using growth on cellophane as a model. Four cDNA clones were found to be induced by growth on cellophane, and qRT-PCR showed two of these genes were up-regulated over a thousand fold in infected apple leaves compared to liquid culture. The predicted proteins for both genes possess putative signal peptides for secretion but have no similarity to sequences in publicly available databases. Both genes encode proteins with novel, imperfect repeat domain structures, the number of which vary in an isolate-specific fashion. Cin1 has seven or eight repeats of about 60 amino acids with four conserved cysteine residues per repeat, while Cin3 has four or five repeats of 32 amino acids with no cysteines. Both proteins appear to have evolved through internal duplication. Cin3, in particular, shows considerable between-strain variation in domain structure, indicating a high degree of recombination at this locus and revealing that the repeat structure has most likely arisen by unequal crossing-over. Results of this study support the hypothesis that cellophane-grown V. inaequalis mimics aspects of biotrophic infection and provide the first insights into novel fungal genes expressed during apple scab infection and their mechanisms of evolution.


Subject(s)
Ascomycota/growth & development , Cellophane , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Malus/microbiology , Morphogenesis , Plant Diseases/microbiology , Up-Regulation , Amino Acid Sequence , Ascomycota/chemistry , Ascomycota/genetics , Ascomycota/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Models, Biological , Molecular Sequence Data , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Protein Sorting Signals , Protein Structure, Tertiary , Sequence Alignment
17.
Viruses ; 10(3)2018 03 19.
Article in English | MEDLINE | ID: mdl-29562672

ABSTRACT

Apple mosaic virus (ApMV) and prune dwarf virus (PDV) are amongst the most common viruses infecting Prunus species worldwide but their incidence and genetic diversity in Australia is not known. In a survey of 127 Prunus tree samples collected from five states in Australia, ApMV and PDV occurred in 4 (3%) and 13 (10%) of the trees respectively. High-throughput sequencing (HTS) of amplicons from partial conserved regions of RNA1, RNA2, and RNA3, encoding the methyltransferase (MT), RNA-dependent RNA polymerase (RdRp), and the coat protein (CP) genes respectively, of ApMV and PDV was used to determine the genetic diversity of the Australian isolates of each virus. Phylogenetic comparison of Australian ApMV and PDV amplicon HTS variants and full length genomes of both viruses with isolates occurring in other countries identified genetic strains of each virus occurring in Australia. A single Australian Prunus infecting ApMV genetic strain was identified as all ApMV isolates sequence variants formed a single phylogenetic group in each of RNA1, RNA2, and RNA3. Two Australian PDV genetic strains were identified based on the combination of observed phylogenetic groups in each of RNA1, RNA2, and RNA3 and one Prunus tree had both strains. The accuracy of amplicon sequence variants phylogenetic analysis based on segments of each virus RNA were confirmed by phylogenetic analysis of full length genome sequences of Australian ApMV and PDV isolates and all published ApMV and PDV genomes from other countries.


Subject(s)
Genetic Variation , Ilarvirus/genetics , Plant Diseases/virology , Prunus/virology , Australia , High-Throughput Nucleotide Sequencing , Ilarvirus/classification , Incidence , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Mol Plant Microbe Interact ; 20(9): 1102-11, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17849713

ABSTRACT

Glomerella cingulata, which infects a number of different hosts, gains entry to the plant tissue by means of an appressorium. Turgor pressure generated within the appressorium forces a penetration peg through the plant cuticle. A visible lesion forms as the fungus continues to grow within the host. A G. cingulata homolog (GcSTUA) of the genes encoding Asm1, Phd1, Sok2, Efg1, and StuA transcription factors in Magnaporthe grisea and other fungi was cloned and shown to be required for infection of intact apple fruit and penetration of onion epidermal cells. Mobilization of glycogen and triacylglycerol during formation of appressoria by the GcSTUA deletion mutant appeared normal and melanization of the maturing appressoria was also indistinguishable from that of the wild type. However, GcSTUA was essential for the generation of normal turgor pressure within the appressorium. As is the case for its homologs in other fungi, GcSTUA also was required for the formation of aerial hyphae, efficient conidiation, and the formation of perithecia (sexual reproductive structures).


Subject(s)
Fungal Proteins/genetics , Phyllachorales/metabolism , Phyllachorales/pathogenicity , Transcription Factors/metabolism , Fruit/microbiology , Gene Deletion , Glycogen/metabolism , Malus/microbiology , Molecular Sequence Data , Mycelium , Onions/microbiology , Phyllachorales/cytology , Phyllachorales/genetics , Plant Diseases/microbiology , Plant Epidermis/cytology , Plant Epidermis/microbiology , Pressure , Spores, Fungal , Transcription Factors/genetics , Triglycerides/metabolism
19.
Front Microbiol ; 8: 1219, 2017.
Article in English | MEDLINE | ID: mdl-28713347

ABSTRACT

The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.

20.
PLoS One ; 12(6): e0179284, 2017.
Article in English | MEDLINE | ID: mdl-28632759

ABSTRACT

PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.


Subject(s)
Biomarkers/metabolism , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing/methods , Ilarvirus/pathogenicity , Plant Diseases/virology , Prunus/virology , Ilarvirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL