Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
PLoS Biol ; 21(5): e3002124, 2023 05.
Article in English | MEDLINE | ID: mdl-37205711

ABSTRACT

Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRß) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRß clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.


Subject(s)
Enterocolitis, Necrotizing , Infant , Infant, Newborn , Humans , Enterocolitis, Necrotizing/genetics , Endothelial Cells , Intestine, Small , Infant, Premature , Intestines , Intestinal Mucosa
2.
Proc Natl Acad Sci U S A ; 120(37): e2306965120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669366

ABSTRACT

Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs). We utilized MISTRG6 mice to model scleroderma by transplantation of healthy or scleroderma skin from a patient with pansclerotic morphea to humanized mice engrafted with unmatched allogeneic HSC. We identified that scleroderma skin grafts contained both skin and bone marrow-derived human CD4 and CD8 T cells along with human endothelial cells and pericytes. Unlike healthy skin, fibroblasts in scleroderma skin were depleted and replaced by mouse fibroblasts. Furthermore, HSC engraftment alleviated multiple signatures of fibrosis, including expression of collagen and interferon genes, and proliferation and activation of human T cells. Fibrosis improvement correlated with reduced markers of T cell activation and expression of human IL-6 by mesenchymal cells. Mechanistic studies supported a model whereby IL-6 trans-signaling driven by CD4 T cell-derived soluble IL-6 receptor complexed with fibroblast-derived IL-6 promoted excess extracellular matrix gene expression. Thus, MISTRG6 mice transplanted with scleroderma skin demonstrated multiple fibrotic responses centered around human IL-6 signaling, which was improved by the presence of healthy bone marrow-derived immune cells. Our results highlight the importance of IL-6 trans-signaling in pathogenesis of scleroderma and the ability of healthy bone marrow-derived immune cells to mitigate disease.


Subject(s)
Basidiomycota , Scleroderma, Localized , Humans , Animals , Mice , Interleukin-6 , Endothelial Cells , Skin , Disease Models, Animal
3.
Am J Pathol ; 194(7): 1374-1387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38537932

ABSTRACT

Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Renal Cell , Cell Cycle Proteins , Cell Proliferation , Kidney Neoplasms , Mitochondria , Receptors, Tumor Necrosis Factor, Type II , Signal Transduction , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Mitochondria/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics
4.
J Immunol ; 211(6): 923-931, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37530585

ABSTRACT

B cells, like T cells, can infiltrate sites of inflammation, but the processes and B cell subsets involved are poorly understood. Using human cells and in vitro assays, we find only a very small number of B cells will adhere to TNF-activated (but not to resting) human microvascular endothelial cells (ECs) under conditions of venular flow and do so by binding to ICAM-1 and VCAM-1. CXCL13 and, to a lesser extent, CXCL10 bound to the ECs can increase adhesion and induce transendothelial migration (TEM) of adherent naive and memory B cells in 10-15 min through a process involving cell spreading, translocation of the microtubule organizing center (MTOC) into a trailing uropod, and interacting with EC activated leukocyte cell adhesion molecule. Engagement of the BCR by EC-bound anti-κ L chain Ab also increases adhesion and TEM of κ+ but not λ+ B cells. BCR-induced TEM takes 30-60 min, requires Syk activation, is initiated by B cell rounding up and translocation of the microtubule organizing center to the region of the B cell adjacent to the EC, and also uses EC activated leukocyte cell adhesion molecule for TEM. BCR engagement reduces the number of B cells responding to chemokines and preferentially stimulates TEM of CD27+ B cells that coexpress IgD, with or without IgM, as well as CD43. RNA-sequencing analysis suggests that peripheral blood CD19+CD27+CD43+IgD+ cells have increased expression of genes that support BCR activation as well as innate immune properties in comparison with total peripheral blood CD19+ cells.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule , Transendothelial and Transepithelial Migration , Humans , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Endothelial Cells , Cell Movement , Endothelium, Vascular/metabolism , Chemokines/metabolism , Antigens, CD/metabolism , Cells, Cultured
5.
Am J Pathol ; 192(4): 722-736, 2022 04.
Article in English | MEDLINE | ID: mdl-35063404

ABSTRACT

Similar to the behavior of inflamed tubular epithelial cells, clear cell renal cell carcinoma (ccRCC) cells express death receptor 3 (DR3 or TNFSFR25) in situ, and expression increases with tumor grade. Surprisingly, E-selectin, which can be induced in endothelial cells by DR3 signaling, is also expressed by ccRCC cells and increases with tumor grade. In ccRCC organ cultures, addition of tumor necrosis factor-like 1A (TL1A or TNFSF15), the ligand for DR3, activates NF-κB and mitogen-activated protein kinases, induces both DR3 and E-selectin expression in an NF-κB-dependent manner, and promotes cell cycle entry. DR3 immunoprecipitated from ccRCC tissue contains sialyl Lewis X moieties (the ligand recognized by E-selectin), proximity ligation assays reveal DR3, and E-selectin interacts on ccRCC cells. Similar to that with the addition of TL1A, the addition of soluble E-selectin to ccRCC organ cultures activates NF-κB and mitogen-activated protein kinases in ccRCC cells and increases both DR3 and E-selectin expression and cell-cycle entry. In contrast, normal renal tubular epithelium, which poorly expresses DR3, is minimally responsive to either of these ligands. These data suggest a functional role for autocrine/paracrine DR3/E-selectin interactions in ccRCC and its progression, revealing a potential new target for therapeutic intervention.


Subject(s)
Carcinoma, Renal Cell , E-Selectin , Kidney Neoplasms , Receptors, Tumor Necrosis Factor, Member 25 , Antigens, CD , Carcinoma, Renal Cell/metabolism , E-Selectin/genetics , E-Selectin/metabolism , Endothelial Cells/metabolism , Female , Humans , Kidney Neoplasms/metabolism , Ligands , Male , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Member 25/genetics , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
6.
Am J Pathol ; 192(1): 112-120, 2022 01.
Article in English | MEDLINE | ID: mdl-34599881

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without cardiovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infiltration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings point to alterations in circulating neutrophils rather than in the endothelium as contributors to the increased thrombotic diathesis in the hearts of COVID-19 patients.


Subject(s)
COVID-19 , Coronary Vessels , Myocarditis , Myocardium , SARS-CoV-2/metabolism , Thrombosis , Aged , Aged, 80 and over , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19/metabolism , COVID-19/pathology , Coronary Vessels/metabolism , Coronary Vessels/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Myocarditis/metabolism , Myocarditis/pathology , Myocardium/metabolism , Myocardium/pathology , Neutrophil Activation , Neutrophils/metabolism , Neutrophils/pathology , Platelet Aggregation , Thrombosis/metabolism , Thrombosis/pathology
7.
FASEB J ; 36(4): e22254, 2022 04.
Article in English | MEDLINE | ID: mdl-35294066

ABSTRACT

Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.


Subject(s)
Guanine Nucleotide Exchange Factors , rhoA GTP-Binding Protein , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Tumor Necrosis Factor-alpha/pharmacology , rap1 GTP-Binding Proteins/genetics , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , rhoB GTP-Binding Protein/metabolism
8.
Yale J Biol Med ; 96(1): 23-42, 2023 03.
Article in English | MEDLINE | ID: mdl-37009190

ABSTRACT

Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.


Subject(s)
Cardiopulmonary Bypass , Endothelial Cells , Child , Humans , Child, Preschool , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Capillary Permeability , Proteomics , Lung/blood supply , Lung/metabolism
9.
Am J Transplant ; 22(7): 1754-1759, 2022 07.
Article in English | MEDLINE | ID: mdl-35373446

ABSTRACT

Despite the profound shortage of organs available for transplant in the U.S., over 5,000 donated organs were declined for use in 2020. Many of these organs were declined due to donor comorbidities or preservation injuries that predispose grafts to rejection and loss. The risks of these poor outcomes can potentially be reduced by pre-transplant application of normothermic machine perfusion (NMP). To date, the clinical use of NMP has focused on extending preservation and improving organ assessment, but the opportunity for ex situ therapeutic delivery may be the most transformative aspect of this technology. In this Personal Viewpoint, we argue that the endothelial cells (ECs) that line the graft vasculature are an accessible, under-exploited, and attractive target for transplant therapeutics delivered during NMP. We further contend that molecularly targeted nanoparticles (NPs) represent a promising therapeutic vehicle particularly well-suited to NMP. However, to achieve this potential, we need to answer the following three key questions: (1) What EC sub-populations exist within an organ? (2) How can these cells be accessed? (3) And most important, how can preferential retention of NPs by the cells of interest be maximized? Here we argue for creating an EC-targeting atlas as a body of knowledge that answers these questions.


Subject(s)
Endothelial Cells , Organ Preservation , Allografts , Humans , Organ Preservation/methods , Perfusion/methods , Tissue Donors
10.
FASEB J ; 35(6): e21627, 2021 06.
Article in English | MEDLINE | ID: mdl-33948992

ABSTRACT

Capillary endothelial cells (ECs) maintain a semi-permeable barrier between the blood and tissue by forming inter-EC tight junctions (TJs), regulating selective transport of fluid and solutes. Overwhelming inflammation, as occurs in sepsis, disrupts these TJs, leading to leakage of fluid, proteins, and small molecules into the tissues. Mechanistically, disruption of capillary barrier function is mediated by small Rho-GTPases, such as RhoA, -B, and -C, which are activated by guanine nucleotide exchange factors (GEFs) and disrupted by GTPase-activating factors (GAPs). We previously reported that a mutation in a specific RhoB GAP (p190BRhoGAP) underlays a hereditary capillary leak syndrome. Tumor necrosis factor (TNF) treatment disrupts TJs in cultured human microvascular ECs, a model of capillary leak. This response requires new gene transcription and involves increased RhoB activation. However, the specific GEF that activates RhoB in capillary ECs remains unknown. Transcriptional profiling of cultured tight junction-forming human dermal microvascular endothelial cells (HDMECs) revealed that 17 GEFs were significantly induced by TNF. The function of each candidate GEF was assessed by short interfering RNA depletion and trans-endothelial electrical resistance screening. Knockown of ArhGEF10 reduced the TNF-induced loss of barrier which was phenocopied by RhoB or dual ArhGEF10/RhoB knockdown. ArhGEF10 knockdown also reduced the extent of TNF-induced RhoB activation and disruption at tight junctions. In a cell-free assay, immunoisolated ArhGEF10 selectively catalyzed nucleotide exchange to activate RhoB, but not RhoA or RhoC. We conclude ArhGEF10 is a TNF-induced RhoB-selective GEF that mediates TJ disruption and barrier loss in human capillary endothelial cells.


Subject(s)
Dermis/metabolism , Endothelium, Vascular/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Tight Junctions/physiology , rhoB GTP-Binding Protein/metabolism , Capillary Permeability , Dermis/cytology , Dermis/drug effects , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Guanine Nucleotide Exchange Factors/genetics , Humans , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , rhoB GTP-Binding Protein/genetics
11.
Mol Pharm ; 19(12): 4466-4486, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36251765

ABSTRACT

This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.


Subject(s)
Nucleic Acids , Nucleic Acids/genetics , Endothelium, Vascular , Blood-Brain Barrier , Genetic Therapy , Biological Transport
12.
Circulation ; 141(6): 464-478, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31744330

ABSTRACT

BACKGROUND: Ischemia reperfusion injury (IRI) predisposes to the formation of donor-specific antibodies, a factor contributing to chronic rejection and late allograft loss. METHODS: We describe a mechanism underlying the correlative association between IRI and donor-specific antibodies by using humanized models and patient specimens. RESULTS: IRI induces immunoglobulin M-dependent complement activation on endothelial cells that assembles an NLRP3 (NOD-like receptor pyrin domain-containing protein 3) inflammasome via a Rab5-ZFYVE21-NIK axis and upregulates ICOS-L (inducible costimulator ligand) and PD-L2 (programmed death ligand 2). Endothelial cell-derived interleukin-18 (IL-18) selectively expands a T-cell population (CD4+CD45RO+PD-1hiICOS+CCR2+CXCR5-) displaying features of recently described T peripheral helper cells. This population highly expressed IL-18R1 and promoted donor-specific antibodies in response to IL-18 in vivo. In patients with delayed graft function, a clinical manifestation of IRI, these cells were Ki-67+IL-18R1+ and could be expanded ex vivo in response to IL-18. CONCLUSIONS: IRI promotes elaboration of IL-18 from endothelial cells to selectively expand alloreactive IL-18R1+ T peripheral helper cells in allograft tissues to promote donor-specific antibody formation.


Subject(s)
Human Umbilical Vein Endothelial Cells/immunology , Immunoglobulin M/immunology , Interleukin-18/immunology , Isoantibodies/immunology , Organ Transplantation , Reperfusion Injury/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Delayed Graft Function/immunology , Delayed Graft Function/pathology , Female , Gene Expression Regulation/immunology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammasomes/immunology , Interleukin-18 Receptor alpha Subunit , Mice , Mice, SCID , Reperfusion Injury/pathology , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/pathology
13.
Am J Transplant ; 21(5): 1902-1909, 2021 05.
Article in English | MEDLINE | ID: mdl-33415805

ABSTRACT

Antibody-mediated deposition of complement membrane attack complexes (MACs) on IFN-γ-primed human endothelial cells (ECs) triggers autocrine/paracrine IL-1ß-mediated EC activation and IL-15 transpresentation to alloreactive effector memory T cells (TEM ), changes that enable ECs to increase T cell proliferation and cytokine release. Here, we report the use of single-cell microchip 32-plex proteomics to more deeply assess the functionality of the activated T cells and dependence upon EC-derived signals. Compared to control ECs, MAC-activated human ECs increase both the frequency and degree of polyfunctionality among both CD4+ and CD8+ -proliferated TEM , assessed as secreted proteins. IFN-γ and TNF-α remain the predominant cytokines made by alloreactive TEM , but a few CD4+ TEM also made IL-4 while more CD8+ TEM made perforin and granzyme B. Increased polyfunctionality was attenuated by treatment of the MAC-activated ECs with anti-IL-15 blocking antibody more effectively than IL-1 receptor blockade. The increased polyfunctionality of T cells resulting from interactions with MAC-activated ECs may further link binding of donor-specific antibody to T cell-mediated allograft pathologies.


Subject(s)
Endothelial Cells , T-Lymphocytes , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Complement System Proteins , Cytokines , Humans , Lymphocyte Activation
14.
Am J Transplant ; 21(1): 161-173, 2021 01.
Article in English | MEDLINE | ID: mdl-32627324

ABSTRACT

Thousands of kidneys from higher-risk donors are discarded annually because of the increased likelihood of complications posttransplant. Given the severe organ shortage, there is a critical need to improve utilization of these organs. To this end, normothermic machine perfusion (NMP) has emerged as a platform for ex vivo assessment and potential repair of marginal organs. In a recent study of 8 transplant-declined human kidneys on NMP, we discovered microvascular obstructions that impaired microvascular blood flow. However, the nature and physiologic impact of these lesions were unknown. Here, in a study of 39 human kidneys, we have identified that prolonged cold storage of human kidneys induces accumulation of fibrinogen within tubular epithelium. Restoration of normoxic conditions-either ex vivo during NMP or in vivo following transplant-triggered intravascular release of fibrinogen correlating with red blood cell aggregation and microvascular plugging. Combined delivery of plasminogen and tissue plasminogen activator during NMP lysed the plugs leading to a significant reduction in markers of renal injury, improvement in indicators of renal function, and improved delivery of vascular-targeted nanoparticles. Our study suggests a new mechanism of cold storage injury in marginal organs and provides a simple treatment with immediate translational potential.


Subject(s)
Kidney Transplantation , Organ Preservation , Humans , Kidney , Kidney Transplantation/adverse effects , Perfusion , Tissue Plasminogen Activator
15.
Am J Pathol ; 190(6): 1138-1150, 2020 06.
Article in English | MEDLINE | ID: mdl-32194049

ABSTRACT

The complement membrane attack complex (MAC) is classically known as a cytolytic effector of innate and adaptive immunity that forms pores in the plasma membrane of pathogens or targeted cells, leading to osmolysis. Nucleated cells resist MAC-mediated cytolysis by expression of inhibitors that block MAC assembly or by rapid removal of MAC through endocytosis or shedding. In the absence of lysis, MAC may induce intracellular signaling and cell activation, responses implicated in a variety of autoimmune, inflammatory, and transplant disease settings. New discoveries into the structure and biophysical properties of MAC revealed heterogeneous MAC precursors and conformations that provide insights into MAC function. In addition, new mechanisms of MAC-mediated signaling and its contribution to disease pathogenesis have recently come to light. MAC-activated cells have been found to express proinflammatory proteins-often through NF-κB-dependent transcription, assemble inflammasomes, enabling processing, and facilitate secretion of IL-1ß and IL-18, as well as other signaling pathways. These recent insights into the mechanisms of action of MAC provide an updated framework to therapeutic approaches that can target MAC assembly, signaling, and proinflammatory effects in various complement-mediated diseases.


Subject(s)
Adaptive Immunity/physiology , Complement Activation/physiology , Complement Membrane Attack Complex/metabolism , Immunity, Innate/physiology , Animals , Humans , Interleukins/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology
16.
Circ Res ; 124(12): 1747-1759, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31170059

ABSTRACT

RATIONALE: Complement activation contributes to multiple immune-mediated pathologies. In late allograft failure, donor-specific antibody deposits complement membrane attack complexes (MAC) on graft endothelial cells (ECs), substantially increasing their immunogenicity without causing lysis. Internalized MAC stabilize NIK (NF-κB [nuclear factor kappa-light-chain-enhancer of activated B cells]-inducing kinase) protein on Rab5+MAC+ endosomes, activating noncanonical NF-κB signaling. However, the link to increased immunogenicity is unclear. OBJECTIVE: To identify mechanisms by which alloantibody and internalized MAC activate ECs to enhance their ability to increase T-cell responses. METHODS AND RESULTS: In human EC cultures, internalized MAC also causes NLRP3 (NOD-like receptor family pyrin domain containing 3) translocation from endoplasmic reticulum to Rab5+MAC+NIK+ endosomes followed by endosomal NIK-dependent inflammasome assembly. Cytosolic NIK, stabilized by LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells), does not trigger inflammasome assembly, and ATP-triggered inflammasome assembly does not require NIK. IFN-γ (interferon-γ) primes EC responsiveness to MAC by increasing NLRP3, pro-caspase 1, and gasdermin D expression. NIK-activated noncanonical NF-κB signaling induces pro-IL (interleukin)-1ß expression. Inflammasome processed pro-IL-1ß, and gasdermin D results in IL-1ß secretion that increases EC immunogenicity through IL-1 receptor signaling. Activation of human ECs lining human coronary artery grafts in immunodeficient mouse hosts by alloantibody and complement similarly depends on assembly of an NLRP3 inflammasome. Finally, in renal allograft biopsies showing chronic rejection, caspase-1 is activated in C4d+ ECs of interstitial microvessels, supporting the relevance of the cell culture findings. CONCLUSIONS: In response to antibody-mediated complement activation, IFN-γ-primed human ECs internalize MAC, triggering both endosomal-associated NIK-dependent NLRP3 inflammasome assembly and IL-1 synthesis, resulting in autocrine/paracrine IL-1ß-mediated increases in EC immunogenicity. Similar responses may underlie other complement-mediated pathologies.


Subject(s)
Complement Membrane Attack Complex/metabolism , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Interferon-gamma/pharmacology , Interleukin-1/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adult , Cells, Cultured , Endothelium, Vascular/drug effects , Female , HEK293 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Inflammasomes/metabolism , Male
17.
Arterioscler Thromb Vasc Biol ; 40(9): 2171-2186, 2020 09.
Article in English | MEDLINE | ID: mdl-32640906

ABSTRACT

OBJECTIVE: Cerebral cavernous malformations (CCM), consisting of dilated capillary channels formed by a single layer of endothelial cells lacking surrounding mural cells. It is unclear why CCM lesions are primarily confined to brain vasculature, although the 3 CCM-associated genes (CCM1, CCM2, and CCM3) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in brain mural cell in CCM pathogenesis. Approach and Results: SM22α-Cre was used to drive a specific deletion of Ccm3 in mural cells, including pericytes and smooth muscle cells (Ccm3smKO). Ccm3smKO mice developed CCM lesions in the brain with onset at neonatal stages. One-third of Ccm3smKO mice survived upto 6 weeks of age, exhibiting seizures, and severe brain hemorrhage. The early CCM lesions in Ccm3smKO neonates were loosely wrapped by mural cells, and adult Ccm3smKO mice had clustered and enlarged capillary channels (caverns) formed by a single layer of endothelium lacking mural cell coverage. Importantly, CCM lesions throughout the entire brain in Ccm3smKO mice, which more accurately mimicked human disease than the current endothelial cell-specific CCM3 deletion models. Mechanistically, CCM3 loss in brain pericytes dramatically increased paxillin stability and focal adhesion formation, enhancing ITG-ß1 (integrin ß1) activity and extracellular matrix adhesion but reducing cell migration and endothelial cell-pericyte associations. Moreover, CCM3-wild type, but not a paxillin-binding defective mutant, rescued the phenotypes in CCM3-deficient pericytes. CONCLUSIONS: Our data demonstrate for the first time that deletion of a CCM gene in the brain mural cell induces CCM pathogenesis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Brain/blood supply , Endothelial Cells/metabolism , Gene Deletion , Hemangioma, Cavernous, Central Nervous System/genetics , Microvessels/metabolism , Myocytes, Smooth Muscle/metabolism , Pericytes/metabolism , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/metabolism , Cell Communication , Cell Movement , Cells, Cultured , Coculture Techniques , Endothelial Cells/pathology , Female , Focal Adhesions/genetics , Focal Adhesions/metabolism , Focal Adhesions/pathology , Genetic Predisposition to Disease , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Microvessels/abnormalities , Myocytes, Smooth Muscle/pathology , Paxillin/metabolism , Pericytes/pathology , Phenotype , Protein Stability , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction
18.
J Allergy Clin Immunol ; 145(2): 550-562, 2020 02.
Article in English | MEDLINE | ID: mdl-32035607

ABSTRACT

BACKGROUND: Airway eosinophilia is a prominent feature of asthma and chronic rhinosinusitis (CRS), and the endothelium plays a key role in eosinophil trafficking. To date, microRNA-1 (miR-1) is the only microRNA known to be regulated in the lung endothelium in asthma models. OBJECTIVE: We sought to determine the role of endothelial miR-1 in allergic airway inflammation. METHODS: We measured microRNA and mRNA expression using quantitative RT-PCR. We used ovalbumin and house dust mite models of asthma. Endothelium-specific overexpression of miR-1 was achieved through lentiviral vector delivery or induction of a transgene. Tissue eosinophilia was quantified by using Congo red and anti-eosinophil peroxidase staining. We measured eosinophil binding with a Sykes-Moore adhesion chamber. Target recruitment to RNA-induced silencing complex was assessed by using anti-Argonaute2 RNA immunoprecipitation. Surface P-selectin levels were measured by using flow cytometry. RESULTS: Serum miR-1 levels had inverse correlations with sputum eosinophilia, airway obstruction, and number of hospitalizations in asthmatic patients and sinonasal tissue eosinophilia in patients with CRS. IL-13 stimulation decreased miR-1 levels in human lung endothelium. Endothelium-specific overexpression of miR-1 reduced airway eosinophilia and asthma phenotypes in murine models and inhibited IL-13-induced eosinophil binding to endothelial cells. miR-1 recruited P-selectin, thymic stromal lymphopoietin, eotaxin-3, and thrombopoietin receptor to the RNA-induced silencing complex; downregulated these genes in the lung endothelium; and reduced surface P-selectin levels in IL-13-stimulated endothelial cells. In our asthma and CRS cohorts, miR-1 levels correlated inversely with its target genes. CONCLUSION: Endothelial miR-1 regulates eosinophil trafficking in the setting of allergic airway inflammation. miR-1 has therapeutic potential in asthmatic patients and patients with CRS.


Subject(s)
Asthma/immunology , Chemotaxis, Leukocyte/immunology , MicroRNAs/immunology , MicroRNAs/metabolism , Rhinitis, Allergic, Perennial/immunology , Sinusitis/immunology , Animals , Asthma/metabolism , Asthma/pathology , Endothelial Cells/metabolism , Eosinophils , Humans , Mice , Pulmonary Eosinophilia/immunology , Pulmonary Eosinophilia/metabolism , Pulmonary Eosinophilia/pathology , Rhinitis, Allergic, Perennial/metabolism , Rhinitis, Allergic, Perennial/pathology , Sinusitis/metabolism , Sinusitis/pathology
19.
Am J Transplant ; 20(9): 2380-2391, 2020 09.
Article in English | MEDLINE | ID: mdl-32167668

ABSTRACT

Tumor necrosis factor receptor 2 (TNFR2) is strongly upregulated on renal tubular epithelial cells by acute cell-mediated rejection (ACR. In human kidney organ culture, TNFR2 signaling both upregulates TNFR2 expression and promotes cell cycle entry of tubular epithelial cells. We find significantly more cells express CD133 mRNA and protein, a putative stem cell marker, in allograft biopsy samples with ACR compared to acute tubular injury without rejection or pretransplant "normal kidney" biopsy samples. Of CD133+ cells, ~85% are within injured tubules and ~15% are interstitial. Both populations express stem cell marker TRA-1-60 and TNFR2, but only tubular CD133+ cells express proximal tubular markers megalin and aquaporin-1. TNFR2+ CD133+ cells in tubules express proliferation marker phospho-histone H3S10 (pH3S10 ). Tubular epithelial cells in normal kidney organ cultures respond to TNFR2 signaling by expressing CD133 mRNA and protein, stem cell marker TRA-1-60, and pH3S10 within 3 hours of treatment. This rapid response time suggests that CD133+ cells in regenerating tubules of kidneys undergoing ACR represent proliferating tubular epithelial cells with TNFR2-induced stem cell markers rather than expansion of resident stem cells. Infiltrating host mononuclear cells are a likely source of TNF as these changes are absent in acute tubular injury .


Subject(s)
Kidney Transplantation , Neoplasms , Allografts , Epithelial Cells , Graft Rejection/etiology , Humans , Kidney , Kidney Tubules , Necrosis , Stem Cells
20.
FASEB J ; 33(2): 2171-2186, 2019 02.
Article in English | MEDLINE | ID: mdl-30252532

ABSTRACT

Dysregulated neutrophil extravasation contributes to the pathogenesis of many inflammatory disorders. Pericytes (PCs) have been implicated in the regulation of neutrophil transmigration, and previous work demonstrates that endothelial cell (EC)-derived signals reduce PC barrier function; however, the signaling mechanisms are unknown. Here, we demonstrate a novel role for EC-derived macrophage migration inhibitory factor (MIF) in inhibiting PC contractility and facilitating neutrophil transmigration. With the use of micro-ELISAs, RNA sequencing, quantitative PCR, and flow cytometry, we found that ECs secrete MIF, and PCs upregulate CD74 in response to TNF-α. We demonstrate that EC-derived MIF decreases PC contractility on 2-dimensional silicone substrates via reduction of phosphorylated myosin light chain. With the use of an in vitro microvascular model of the human EC-PC barrier, we demonstrate that MIF decreases the PC barrier to human neutrophil transmigration by increasing intercellular PC gap formation. For the first time, an EC-specific MIF knockout mouse was used to investigate the effects of selective deletion of EC MIF. In a model of acute lung injury, selective deletion of EC MIF decreases neutrophil infiltration to the bronchoalveolar lavage and tissue and simultaneously decreases PC relaxation by increasing myosin light-chain phosphorylation. We conclude that paracrine signals from EC via MIF decrease PC contraction and enhance PC-regulated neutrophil transmigration.-Pellowe, A. S., Sauler, M., Hou, Y., Merola, J., Liu, R., Calderon, B., Lauridsen, H. M., Harris, M. R., Leng, L., Zhang, Y., Tilstam, P. V., Pober, J. S., Bucala, R., Lee, P. J., Gonzalez, A. L. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation.


Subject(s)
Endothelium, Vascular/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Neutrophils/cytology , Pericytes/cytology , Animals , Bronchoalveolar Lavage Fluid , Cells, Cultured , Endothelium, Vascular/cytology , Enzyme-Linked Immunosorbent Assay , Humans , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL