Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Sci ; 20(5)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30823680

ABSTRACT

Scaffolds made of biodegradable biomaterials are widely used to guide bone regeneration. Commonly, in vitro assessment of scaffolds' osteogenesis potential has been performed predominantly in monoculture settings. Hence, this study evaluated the potential of an unstimulated, growth factor-free co-culture system comprised of osteoblasts (OB) and peripheral blood mononuclear cells (PBMC) over monoculture of OB as an in vitro platform for screening of bone regeneration potential of scaffolds. Particularly, this study focuses on the osteogenic differentiation and mineralized matrix formation aspects of cells. The study was performed using scaffolds fabricated by means of a melt electrowriting (MEW) technique made of medical-grade polycaprolactone (PCL), with or without a surface coating of calcium phosphate (CaP). Qualitative results, i.e., cell morphology by fluorescence imaging and matrix mineralization by von Kossa staining, indicated the differences in cell behaviours in response to scaffolds' biomaterial. However, no obvious differences were noted between OB and OB+PBMC groups. Hence, quantitative investigation, i.e., alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activities, and gene expression were quantitatively evaluated by reverse transcription-polymerase chain reaction (RT-qPCR), were evaluated only of PCL/CaP scaffolds cultured with OB+PBMC, while PCL/CaP scaffolds cultured with OB or PBMC acted as a control. Although this study showed no differences in terms of osteogenic differentiation and ECM mineralization, preliminary qualitative results indicate an obvious difference in the cell/non-mineralized ECM density between scaffolds cultured with OB or OB+PBMC that could be worth further investigation. Collectively, the unstimulated, growth factor-free co-culture (OB+PBMC) system presented in this study could be beneficial for the pre-screening of scaffolds' in vitro bone regeneration potential prior to validation in vivo.


Subject(s)
Monocytes/cytology , Osteoblasts/cytology , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Cell Differentiation , Cells, Cultured , Coculture Techniques/methods , Humans , Polyesters/chemistry
2.
Int J Mol Sci ; 20(7)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978933

ABSTRACT

Ceramic materials mimic the mineral composition of native bone and feature osteoconductive properties; they are therefore used to regenerate bone tissue. Much research focuses on increasing the porosity and pore interconnectivity of ceramic scaffolds to increase osteoconductivity, cell migration and cell-cell interaction. We aimed to fabricate biocompatible 3D-scaffolds featuring macro- and microporous calcium phosphates with high pore interconnection. Nanoparticles of hydroxyapatite (HA) and calcium deficient hydroxyapatite (CDHA) were synthesized by wet chemical precipitation. Scaffolds were produced from them by the replication polymeric foam technique. Solid content and sintering temperature were varied. Nanoparticles and scaffolds were characterized regarding morphology, chemical and mineral composition, porosity and mechanical properties. Biocompatibility, cell attachment and distribution were evaluated in vitro with human adipose mesenchymal stem cells. Scaffolds with total porosity of 71%-87%, pores in the range of 280-550 µm and connectivity density up to 43 mm-3 were obtained. Smaller pore sizes were obtained at higher sintering temperature. High solid content resulted in a decrease of total porosity but increased interconnectivity. Scaffolds 50HA/50ß-TCP featured superior interconnectivity and mechanical properties. They were bioactive and biocompatible. High HA solid content (40 wt.%) in the HA pure scaffolds was negative for cell viability and proliferation, while in the 50HA/50ß-TCP composite scaffolds it resulted more biocompatible.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Cell Adhesion , Cell Survival , Cells, Cultured , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Porosity , Tissue Engineering
3.
Int J Mol Sci ; 16(7): 15997-6016, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26184185

ABSTRACT

Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.


Subject(s)
Hydrogels/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Adhesion , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Hydrogels/metabolism , Tissue Engineering
4.
Acta Biomater ; 163: 259-274, 2023 06.
Article in English | MEDLINE | ID: mdl-35038587

ABSTRACT

The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.


Subject(s)
Histones , Tissue Scaffolds , Tissue Scaffolds/chemistry , Mechanotransduction, Cellular , Biocompatible Materials , Epigenesis, Genetic
5.
Front Bioeng Biotechnol ; 10: 995266, 2022.
Article in English | MEDLINE | ID: mdl-36213070

ABSTRACT

The treatment of large bone defects represents a major clinical challenge. 3D printed scaffolds appear as a promising strategy to support bone defect regeneration. The 3D design of such scaffolds impacts the healing path and thus defect regeneration potential. Among others, scaffold architecture has been shown to influence the healing outcome. Gyroid architecture, characterized by a zero mean surface curvature, has been discussed as a promising scaffold design for bone regeneration. However, whether gyroid scaffolds are favourable for bone regeneration in large bone defects over traditional strut-like architecture scaffolds remains unknown. Therefore, the aim of this study was to investigate whether gyroid scaffolds present advantages over more traditional strut-like scaffolds in terms of their bone regeneration potential. Validated bone defect regeneration principles were applied in an in silico modeling approach that allows to predict bone formation in defect regeneration. Towards this aim, the mechano-biological bone regeneration principles were adapted to allow simulating bone regeneration within both gyroid and strut-like scaffolds. We found that the large surface curvatures of the gyroid scaffold led to a slower tissue formation dynamic and conclusively reduced bone regeneration. The initial claim, that an overall reduced zero mean surface curvature would enhance bone formation, could not be confirmed. The here presented approach illustrates the potential of in silico tools to evaluate in pre-clinical studies scaffold designs and eventually lead to optimized architectures of 3D printed implants for bone regeneration.

6.
Metabolites ; 12(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35629956

ABSTRACT

The identification of endogenous metabolites has great potential for understanding the underlying tissue processes occurring in either a homeostatic or a diseased state. The application of gas chromatography-mass spectrometry (GC-MS)-based metabolomics on musculoskeletal tissue samples has gained traction. However, limited comparison studies exist evaluating the sensitivity, reproducibility, and robustness of the various existing extraction protocols for musculoskeletal tissues. Here, we evaluated polar metabolite extraction from bone and muscle of mouse origin. The extraction methods compared were (1) modified Bligh-Dyer (mBD), (2) low chloroform (CHCl3)-modified Bligh-Dyer (mBD-low), and (3) modified Matyash (mMat). In particular, the central carbon metabolites (CCM) appear to be relevant for musculoskeletal regeneration, given their role in energy metabolism. However, the sensitivity, reproducibility, and robustness of these methods for detecting targeted polar CCM remains unknown. Overall, the extraction of metabolites using the mBD, mBD-low, and mMat methods appears sufficiently robust and reproducible for bone, with the mBD method slightly bettering the mBD-low and mMat methods. Furthermore, mBD, mBD-low, and mMat were sufficiently sensitive in detecting polar metabolites extracted from mouse muscle; however, they lacked repeatability. This study highlights the need for a re-thinking, towards a tissue-specific optimization of methods for metabolite extractions, ensuring sufficient sensitivity, repeatability, and robustness.

7.
Curr Opin Biotechnol ; 74: 263-270, 2022 04.
Article in English | MEDLINE | ID: mdl-35007988

ABSTRACT

Additive manufacturing (AM) can deliver personalized scaffolds to support large volume defect tissue regeneration - a major clinical challenge in many medical disciplines. The freedom in scaffold design and composition (biomaterials and biologics) offered by AM yields a plethora of possibilities but is confronted with a heterogenous biological regeneration potential across individuals. A key challenge is to make the right choice for individualized scaffolds that match biology, anatomy, and mechanics of patients. This review provides an overview of state-of-the-art technologies, that is, in silico modelling for scaffold design, omics and bioinformatics to capture patient biology and information technology for data management, that, when combined in a synergistic way with AM, have great potential to make personalized tissue regeneration strategies available to all patients, empowering precision medicine.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Bone Regeneration , Humans
8.
Cells ; 11(11)2022 05 26.
Article in English | MEDLINE | ID: mdl-35681447

ABSTRACT

The use of multiphasic scaffolds to treat injured tendon-to-bone entheses has shown promising results in vitro. Here, we used two versions of a biphasic silk fibroin scaffold to treat an enthesis defect created in a rat patellar model in vivo. One version presented a mixed transition between the bony and the tendon end of the construct (S-MT) while this transition was abrupt in the second version (S-AT). At 12 weeks after surgery, the S-MT scaffold promoted better healing of the injured enthesis, with minimal undesired ossification of the insertion area. The expression of tenogenic and chondrogenic markers was sustained for longer in the S-MT-treated group and the tangent modulus of the S-MT-treated samples was similar to the native tissue at 12 weeks while that of the S-AT-treated enthesis was lower. Our study highlights the important role of the transition zone of multiphasic scaffolds in the treatment of complex interphase tissues such as the tendon-to-bone enthesis.


Subject(s)
Fibroins , Tendon Injuries , Tissue Scaffolds , Wound Healing , Animals , Fibroins/pharmacology , Interphase , Rats , Tendons
9.
Adv Healthc Mater ; 10(6): e2001692, 2021 03.
Article in English | MEDLINE | ID: mdl-33448144

ABSTRACT

Lesions involving the osteochondral unit are difficult to treat. Biomimetic scaffolds are previously shown as promising alternative. Such devices often lack multiple functional layers that mimic bone, cartilage, and the interface. In this study, multilayered scaffolds are developed based on the use of natural extracellular matrix (ECM)-like biopolymers. Particular attention is paid to obtain a complex matrix that mimics the native osteochondral transition. Porous, sponge-like chitosan-collagen-octacalcium phosphate (OCP) scaffolds are obtained. Collagen content increases while the amount of OCP particles decreases toward the cartilage layer. The scaffolds are bioactive as a mineral layer is deposited containing hydroxyapatite at the bony side. The scaffolds stimulate proliferation of human adipose-derived mesenchymal stem cells, but the degree of proliferation depends on the cell seeding density. The scaffolds give rise to a zone-specific gene expression. RUNX2, COL1A1, BGLAP, and SPP1 are upregulated in the bony layer of the scaffold. SOX9 is upregulated concomitant with COL2A1 expression in the cartilage zone. Mineralization in presence of the cells is prominent in the bone area with Ca and P steadily increasing over time. These results are encouraging for the fabrication of biomimetic scaffolds using ECM-like materials and featuring gradients that mimic native tissues and their interface.


Subject(s)
Stem Cells , Tissue Scaffolds , Calcium Phosphates , Cell Differentiation , Humans , Porosity , Tissue Engineering
10.
Front Bioeng Biotechnol ; 8: 568934, 2020.
Article in English | MEDLINE | ID: mdl-33425863

ABSTRACT

Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology.

11.
Nat Commun ; 11(1): 4527, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913197

ABSTRACT

Evasion of programmed cell death represents a critical form of oncogene addiction in cancer cells. Understanding the molecular mechanisms underpinning cancer cell survival despite the oncogenic stress could provide a molecular basis for potential therapeutic interventions. Here we explore the role of pro-survival genes in cancer cell integrity during clonal evolution in non-small cell lung cancer (NSCLC). We identify gains of MCL-1 at high frequency in multiple independent NSCLC cohorts, occurring both clonally and subclonally. Clonal loss of functional TP53 is significantly associated with subclonal gains of MCL-1. In mice, tumour progression is delayed upon pharmacologic or genetic inhibition of MCL-1. These findings reveal that MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Clonal Evolution , DNA Copy Number Variations , Datasets as Topic , Disease Models, Animal , Disease Progression , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Primary Cell Culture , Prospective Studies , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA-Seq , Retrospective Studies , Spheroids, Cellular , Thiophenes/pharmacology , Thiophenes/therapeutic use , Tumor Burden/drug effects , Tumor Burden/genetics , Tumor Suppressor Protein p53/genetics , X-Ray Microtomography
12.
Sci Rep ; 9(1): 9170, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235704

ABSTRACT

Additive manufacturing (AM) is a rapidly emerging technology that has the potential to produce personalized scaffolds for tissue engineering applications with unprecedented control of structural and functional design. Particularly for bone defect regeneration, the complex coupling of biological mechanisms to the scaffolds' properties has led to a predominantly trial-and-error approach. To mitigate this, shape or topology optimization can be a useful tool to design a scaffold architecture that matches the desired design targets, albeit at high computational cost. Here, we consider an efficient macroscopic optimization routine based on a simple one-dimensional time-dependent model for bone regeneration in the presence of a bioresorbable polymer scaffold. The result of the optimization procedure is a scaffold porosity distribution which maximizes the stiffness of the scaffold and regenerated bone system over the entire regeneration time, so that the propensity for mechanical failure is minimized.


Subject(s)
Bone Regeneration , Bone and Bones , Computer-Aided Design , Tissue Engineering/methods , Tissue Scaffolds , Humans , Polymers/chemistry , Porosity
13.
Biomed Mater ; 14(6): 065002, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31387088

ABSTRACT

Additive manufacturing (AM) presents the possibility of personalized bone scaffolds with unprecedented structural and functional designs. In contrast to earlier conventional design concepts, e.g. raster-angle, a workflow was established to produce scaffolds with triply periodic minimal surface (TPMS) architecture. A core challenge is the realization of such structures using melt-extrusion based 3D printing. This study presents methods for generation of scaffold design files, finite element (FE) analysis of scaffold Young's moduli, AM of scaffolds with polycaprolactone (PCL), and a customized in vitro assay to evaluate cell migration. The reliability of FE analysis when using computer-aided designed models as input may be impeded by anomalies introduced during 3D printing. Using micro-computed tomography reconstructions of printed scaffolds as an input for numerical simulation in comparison to experimentally obtained scaffold Young's moduli showed a moderate trend (R 2 = 0.62). Interestingly, in a preliminary cell migration assay, adipose-derived mesenchymal stromal cells (AdMSC) migrated furthest on PCL scaffolds with Diamond, followed by Gyroid and Schwarz P architectures. A similar trend, but with an accelerated AdMSC migration rate, was observed for PCL scaffolds surface coated with calcium-phosphate-based apatite. We elaborate on the importance of start-to-finish integration of all steps of AM, i.e. design, engineering and manufacturing. Using such a workflow, specific biological and mechanical functionality, e.g. improved regeneration via enhanced cell migration and higher structural integrity, may be realized for scaffolds intended as temporary guiding structures for endogenous tissue regeneration.


Subject(s)
Bioengineering/instrumentation , Bioengineering/methods , Bone and Bones/chemistry , Calcium Phosphates/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adipocytes/cytology , Cell Movement , Compressive Strength , Computer Simulation , Computer-Aided Design , Finite Element Analysis , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Polyesters/chemistry , Polymers/chemistry , Porosity , Printing, Three-Dimensional , Regeneration , Stress, Mechanical , Surface Properties , X-Ray Microtomography
14.
APMIS ; 127(2): 53-63, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30698307

ABSTRACT

Assessment of bone graft material efficacy is difficult in humans, since invasive methods like staged CT scans or biopsies are ethically unjustifiable. Therefore, we developed a novel large animal model for the verification of a potential transformation of synthetic bone graft substitutes into vital bone. The model combines multiple imaging methods with corresponding histology in standardized critical sized cancellous bone defect. Cylindrical bone voids (10 ml) were created in the medial femoral condyles of both hind legs (first surgery at right hind leg, second surgery 3 months later at left hind leg) in three merino-wool sheep and either (i) left empty, filled with (ii) cancellous allograft bone or (iii) a synthetic, gentamicin eluting bone graft substitute. All samples were analysed with radiographs, MRI, µCT, DEXA and histology after sacrifice at 6 months. Unfilled defects only showed ingrowth of fibrous tissue, whereas good integration of the cancellous graft was seen in the allograft group. The bone graft substitute showed centripetal biodegradation and new trabecular bone formation in the periphery of the void as early as 3 months. µCT gave excellent insight into the structural changes within the defects, particularly progressive allograft incorporation and the bone graft substitute biodegradation process. MRI completed the picture by clearly visualizing soft tissue ingrowth into unfilled bone voids and presence of fluid collections. Histology was essential for verification of trabecular bone and osteoid formation. Conventional radiographs and DEXA could not differentiate details of the ongoing transformation process. This model appears well suited for detailed in vivo and ex vivo evaluation of bone graft substitute behaviour within large bone defects.


Subject(s)
Bone Substitutes/therapeutic use , Bone Transplantation/methods , Cancellous Bone/growth & development , Femur/surgery , Allografts , Animals , Calcium Sulfate , Durapatite , Female , Magnetic Resonance Imaging , Models, Animal , Sheep
15.
Stem Cells Int ; 2018: 5402853, 2018.
Article in English | MEDLINE | ID: mdl-30123287

ABSTRACT

Extremely low-frequency pulsed electromagnetic field (ELF-PEMF) devices have been used in the clinic for the treatment of bone disorders over the past 30 years. However, the underlying mechanism of which ELF-PEMFs exert an effect on tissues at a cellular level is not well understood. Hence, in this study, we explored the potential of different ELF-PEMF signals in modulating human adipose-derived mesenchymal stromal cells' (hAMSC) osteogenic capability. The cell proliferation rate was assessed using carboxyfluorescein succinimidyl ester (CFSE) method. The osteogenesis potential of cells was determined by alkaline phosphatase (ALP) activity, Alizarin-Red S staining, and RT-qPCR. Finally, the intracellular signaling pathway of a selected ELF-PEMF signal was examined using the PathScan Intracellular Signaling Array. Among the tested ELF-PEMF signals, program 20 (26 Hz) showed activation of the Akt and MAPK/ERK signaling cascade and significant upregulations of collagen I, alkaline phosphatase, and osteocalcin when compared to nonstimulated cells. This study demonstrates the potential of certain ELF-PEMF signal parameters to induce osteogenic differentiation of hAMSC and provides important clues in terms of the molecular mechanisms for the stimulation of osteogenic effects by ELF-PEMF on hAMSC.

16.
Acta Biomater ; 72: 150-166, 2018 05.
Article in English | MEDLINE | ID: mdl-29550439

ABSTRACT

The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor ß2 (TGF-ß2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-ß2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-ß2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-ß2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. STATEMENT OF SIGNIFICANCE: Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and clinical outcome. This study proposes a novel approach for enthesis regeneration based on a biomimetic and integrated tendon/ligament-to-bone construct, stem cells and heparin-based delivery of growth factors. We show that heparin can keep growth factors local and biologically active at low doses, which is critical to avoid supraphysiological doses and associated side effects. In addition, we identify synergistic effects of biological (growth factors) and structural (pore alignment) cues on stem cells. These results improve current understanding on the combined impact of biological and structural cues on the multi-lineage differentiation capacity of stem cells for regenerating complex tissue interphases.


Subject(s)
Adipose Tissue/metabolism , Fibroins/chemistry , Growth Differentiation Factor 5 , Ligaments , Mesenchymal Stem Cells/metabolism , Tendons , Tissue Scaffolds/chemistry , Transforming Growth Factor beta2 , Adipose Tissue/cytology , Growth Differentiation Factor 5/chemistry , Growth Differentiation Factor 5/pharmacokinetics , Growth Differentiation Factor 5/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Tissue Engineering , Transforming Growth Factor beta2/chemistry , Transforming Growth Factor beta2/pharmacokinetics , Transforming Growth Factor beta2/pharmacology
17.
Eur J Med Res ; 23(1): 30, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29866167

ABSTRACT

BACKGROUND: Capsular contracture is one of the most common complications in surgical interventions for aesthetic breast augmentation or post-mastectomy breast reconstruction involving the use of silicone prostheses. Although the precise cause of capsular contracture is yet unknown, the leading hypothesis is that it is caused by long-term unresolved foreign body reaction towards the silicone breast implant. To authors' best knowledge, this is the first study that elucidates the presence of lysyl oxidase (LOX)-an enzyme that is involved in collagen and elastin crosslinking within fibrous capsules harvested from patients with severe capsular contracture. It was hypothesized that over-expression of LOX plays a role in the irreversible crosslinking of collagen and elastin which, in turn, stabilizes the fibrous proteins and contributes to the progression of capsular contracture. METHODS: Eight fibrous capsules were collected from patients undergoing capsulectomy procedure, biomechanical testing was performed for compressive Young's moduli and evaluated for Type I and II collagen, elastin and LOX by means of non-linear optical microscopy and immunohistology techniques. RESULTS: Observations revealed the heterogeneity of tissue structure within and among the collected fibrous capsules. Regardless of the tissue structure, it has been shown that LOX expression was intensified at the implant-to-tissue interface. CONCLUSION: Our results indicate the involvement of LOX in the initiation of fibrous capsule formation which ultimately contributes towards the progression of capsular contracture.


Subject(s)
Breast Implants/adverse effects , Collagen/analysis , Elastin/analysis , Implant Capsular Contracture/pathology , Protein-Lysine 6-Oxidase/analysis , Adult , Female , Humans , Implant Capsular Contracture/metabolism , Middle Aged , Nonlinear Optical Microscopy , Pilot Projects
18.
Sci Rep ; 7: 42905, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220831

ABSTRACT

Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution ("maximum ADC") exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours' ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour's response to treatment.


Subject(s)
Antineoplastic Agents/metabolism , Carboplatin/metabolism , Ovarian Neoplasms/pathology , Paclitaxel/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carboplatin/pharmacology , Carboplatin/therapeutic use , Diffusion Magnetic Resonance Imaging , Drug Therapy, Combination , Elastic Modulus , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Statistics, Nonparametric , Transplantation, Heterologous
19.
Data Brief ; 7: 923-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27081669

ABSTRACT

Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period.

20.
Acta Biomater ; 30: 319-333, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26563472

ABSTRACT

In this study, polycaprolactone (PCL)-based composite scaffolds containing 50wt% of 45S5 Bioglass(®) (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using an additive manufacturing technique for bone tissue engineering purposes. The PCL scaffolds were surface coated with calcium phosphate (CaP) to enable further comparison of the osteoinductive potential of different scaffolds: PCL (control), PCL/CaP-coated, PCL/50-45S5 and PCL/50-SrBG scaffolds. The PCL/50-45S5 and PCL/50-SrBG composite scaffolds were reproducibly manufactured with a morphology highly resembling that of PCL only scaffolds. However, 50wt% loading of the bioactive glass (BG) particles into the PCL bulk decreased the scaffold's compressive Young's modulus. Coating of PCL scaffolds with CaP had a negligible effect on the scaffold's porosity and compressive Young's modulus. When immersed in culture media, BG dissolution ions (Si and Sr) were detected for up to 10weeks in the immersion media and surface precipitates were formed on both PCL/50-45S5 and PCL/50-SrBG scaffolds' surfaces, indicating good in vitro bioactivity. In vitro cell studies were conducted using sheep bone marrow stromal cells (BMSCs) under non-osteogenic or osteogenic conditioned media, and under static or dynamic culture environments. All scaffolds were able to support cell adhesion, growth and proliferation. However, when cultured in non-osteogenic media, only PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds showed an up-regulation of osteogenic gene expression. Additionally, under a dynamic culture environment, the rate of cell growth, proliferation and osteoblast-related gene expression was enhanced across all scaffold groups. Subsequently, PCL/CaP, PCL/50-45S5 and PCL/50-SrBG scaffolds, with or without seeded cells, were implanted subcutaneously into nude rats for the evaluation of osteoinductivity potential. After 8 and 16weeks, host tissue infiltrated well into the scaffolds, but no mature bone formation was observed in any scaffolds groups. STATEMENT OF SIGNIFICANCE: This novelty of this research work is that it provide a comprehensive comparison, both in vitro and in vivo, between 3 different composite materials widely used in the field of bone tissue engineering for their bone regeneration capabilities. The materials used in this study include polycaprolactone, 45S5 Bioglass, strontium-substituted bioactive glass and calcium phosphate. Additionally, the composite materials were fabricated into the form of 3D scaffolds using additive manufacturing technique, a widely used technique in tissue engineering.


Subject(s)
Calcium Phosphates , Ceramics , Coated Materials, Biocompatible , Osteogenesis/drug effects , Polyesters , Tissue Scaffolds/chemistry , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Ceramics/chemistry , Ceramics/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Rats , Rats, Nude , Sheep , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL