Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063206

ABSTRACT

Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.


Subject(s)
Drosophila melanogaster , Nanoparticles , Polystyrenes , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Polystyrenes/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , Carcinogens/toxicity , Larva/drug effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Longevity/drug effects , Fat Body/metabolism , Fat Body/drug effects
2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298244

ABSTRACT

Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS's drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins.


Subject(s)
Antioxidants , Mitogen-Activated Protein Kinases , Mice , Animals , Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases , HSP27 Heat-Shock Proteins , p38 Mitogen-Activated Protein Kinases , Apoptosis , Mitogen-Activated Protein Kinase 8 , DNA, Mitochondrial
3.
Genes (Basel) ; 14(6)2023 06 09.
Article in English | MEDLINE | ID: mdl-37372418

ABSTRACT

The evaluation of the integrity and quantity of DNA extracted from archaeological human remains is a fundamental step before using the latest generation sequencing techniques in the study of evolutionary processes. Ancient DNA is highly fragmented and chemically modified; therefore, the present study aims to identify indices that can allow the identification of potentially amplifiable and sequenceable DNA samples, reducing failures and research costs. Ancient DNA was extracted from five human bone remains from the archaeological site of Amiternum L'Aquila, Italy dating back to the 9th-12th century and was compared with standard DNA fragmented by sonication. Given the different degradation kinetics of mitochondrial DNA compared to nuclear DNA, the mitochondrially encoded 12s RNA and 18s ribosomal RNA genes were taken into consideration; fragments of various sizes were amplified in qPCR and the size distribution was thoroughly investigated. DNA damage degree was evaluated by calculating damage frequency (λ) and the ratio between the amount of the different fragments and that of the smallest fragment (Q). The results demonstrate that both indices were found to be suitable for identifying, among the samples tested, those less damaged and suitable for post-extraction analysis; mitochondrial DNA is more damaged than nuclear, in fact, amplicons up to 152 bp and 253 bp, respectively are obtained.


Subject(s)
Body Remains , DNA, Ancient , Humans , Italy , Bone and Bones , DNA, Mitochondrial/genetics
4.
Anal Chim Acta ; 1200: 339601, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35256142

ABSTRACT

A new instrumental neutron activation analysis (INAA) for the simultaneous determination of titanium (TiO2) and silica (SiO2) dioxide as UV-filters in sunscreens is described. Samples are encapsulated, neutron irradiated (30 s) and after a suitable decay (3 min), the induced 51Ti (T1/2 = 5.76 min) and 29Al (T1/2 = 6.56 min) radionuclides are measured for the emitted γ-ray fingerprint. Three applications were carried out: (i) screening study (analysis of commercial sunscreens in combination with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS); (ii) research study (development of innovative UV-filters such as titanium dioxide or bismuth titanate loaded inorganic mesoporous silica nanoparticles, MSN); (iii) validation study (intercalibration of a spectrochemical method - inductively coupled plasma optical emission spectrometry, ICP-OES). Collectively, the nuclear method appears a powerful tool adequate for quantifying TiO2 and SiO2 in the above studies. The limited accessibility at the nuclear reactor for neutron activation is probably one of the reasons why the excellent characteristics of the nuclear technique are not always fully known and exploited in the industrial and research chemical world.


Subject(s)
Nanoparticles , Sunscreening Agents , Nanoparticles/analysis , Neutron Activation Analysis , Silicon Dioxide , Titanium/analysis
5.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494245

ABSTRACT

Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.

6.
Saudi J Biol Sci ; 26(1): 8-19, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30655714

ABSTRACT

Tyrosinase (EC.1.14.18.1.) is a widespread enzyme, in the phylogenetic scale, that produces melanin, from bacteria to man, by using as substrates monophenols, o-diphenols and molecular oxygen. In this work we have confirmed and demonstrated that during Bufo bufo development tyrosinase activity and gene expression first occur at developmental stages 17-18 (tail bud-muscular response) as detected by a spectrophotometric assay and qRT-PCR. As expected, also during B. bufo development tyrosinase gene is expressed after the late gastrula (stage 12), differently from Rana pipiens development when tyrosinase mRNA appears at the neural plate stage and enzyme activity at stage 20 (gill circulation). We have cloned and sequenced the B. bufo tyrosinase cDNA in order to prepare B. bufo tyrosinase cDNA specific primers (forward and reverse). Tyrosinase mRNA cloning has been performed by using degenerate primers prepared according to the anuran tyrosinase gene sequence coding for the copper binding sites. The expressions of tyrosinase gene and enzymatic activity during B. bufo development support that until the developmental stage 17, embryo melanin is of maternal origin and at this stage can start embryo melanin synthesis. A correlation exists between tyrosinase expression and O2 consumption during B. bufo development.

7.
Cell Death Discov ; 4: 32, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29531829

ABSTRACT

A survey of the truffle Tuber melanosporum genome has shown the presence of 67 programmed cell death (PCD)-related genes. The 67 genes are all expressed during fruit body (FB) development of T. melanosporum development; their expression has been detected by DNA microarrays and qPCR. A set of 14 PCD-related genes have been chosen, those with the highest identities to the homologs of other species, for a deeper investigation. That PCD occurs during T. melanosporum development has been demonstrated by the TUNEL reaction and transmission electron microscopy. The findings of this work, in addition to the discovery of PCD-related genes in the T. melanosporum genome and their expression during the differentiation and development of the FB, would suggest that one of the PCD subroutines, maybe autophagy, is involved in the FB ripening, i.e., sporogenesis.

9.
Phytochemistry ; 116: 78-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25778998

ABSTRACT

The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; ß-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; ß-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable genes for fruiting body developmental stages.


Subject(s)
Ascomycota/genetics , Ascomycota/chemistry , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/metabolism , Gene Expression , Glucosephosphate Dehydrogenase/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Plant Roots/metabolism , Real-Time Polymerase Chain Reaction , Ribosomal Proteins , Software , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL