Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 633(8029): 417-425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198650

ABSTRACT

Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Induced Pluripotent Stem Cells , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Male , Adult , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/cytology , Granulocyte-Macrophage Colony-Stimulating Factor/deficiency , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Female , Respiratory Burst , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Interferon-gamma/immunology , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Homozygote , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Mycobacterium tuberculosis/immunology
2.
Proc Natl Acad Sci U S A ; 120(46): e2314225120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931111

ABSTRACT

Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.


Subject(s)
RNA Splice Sites , RNA Splicing , Humans , Introns , Mutation , Genome
3.
Cell Rep ; 42(3): 112202, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36871220

ABSTRACT

In developing embryos, specific cell populations are often removed to remodel tissue architecture for organogenesis. During urinary tract development, an epithelial duct called the common nephric duct (CND) gets shortened and eventually eliminated to remodel the entry point of the ureter into the bladder. Here we show that non-professional efferocytosis (the process in which epithelial cells engulf apoptotic bodies) is the main mechanism that contributes to CND shortening. Combining biological metrics and computational modeling, we show that efferocytosis with actomyosin contractility are essential factors that drive the CND shortening without compromising the ureter-bladder structural connection. The disruption of either apoptosis, non-professional efferocytosis, or actomyosin results in contractile tension reduction and deficient CND shortening. Actomyosin activity helps to maintain tissue architecture while non-professional efferocytosis removes cellular volume. Together our results demonstrate that non-professional efferocytosis with actomyosin contractility are important morphogenetic factors controlling CND morphogenesis.


Subject(s)
Actomyosin , Epithelial Cells , Phagocytosis , Epithelium , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL