Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Fish Dis ; 47(3): e13900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38058214

ABSTRACT

Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand are known to develop abnormal spinal curvature late in seawater production. Its cause is presently unknown, but there is evidence to suggest a neuromuscular pathology. Using magnetic resonance imaging (MRI), we evaluated the relationship between soft tissue pathology and spinal curvature in farmed Chinook salmon. Regions of interest (ROIs) presenting as pathologic MRI signal hyper-intensity were identified from scans of 24 harvest-sized individuals: 13 with radiographically-detectable spinal curvature and 11 without. ROIs were excised from individuals using anatomical landmarks as reference points and histologically analysed. Pathologic MRI signal was observed more frequently in individuals with radiographic curvature (92%, n = 12) than those without (18%, n = 2), was localized to the peri-vertebral connective tissues and musculature, and presented as three forms: inflammation, fibrosis, or both. These pathologies are consistent with a chronic inflammatory process, such as that observed during recovery from a soft tissue injury, and suggest spinal curvature in farmed Chinook salmon may be associated with damage to and/or compromised integrity of the peri-vertebral soft tissues. Future research to ascertain the contributing factors is required.


Subject(s)
Fish Diseases , Spinal Curvatures , Humans , Animals , Salmon , Fish Diseases/diagnostic imaging , Fish Diseases/pathology , Spine , Inflammation/diagnostic imaging , Inflammation/veterinary
2.
Exp Eye Res ; 194: 108006, 2020 05.
Article in English | MEDLINE | ID: mdl-32194065

ABSTRACT

Vitreous liquefactive processes play an integral role in ocular health. Knowledge of the degree of liquefaction would allow better monitoring of ocular disease progression and enable more informed therapeutic dosing for an individual patient. Presently this process cannot be monitored in a non-invasive manner. Here, we evaluated whether magnetic resonance imaging (MRI) could predict the viscoelasticity and in turn liquefactive state of artificial and biological vitreous humour. Gels comprising identical concentrations of hyaluronic acid and agar ranging from 0.125 to 2.25 mg/ml of each polymer were prepared and their T2 was measured using a turbo-spin echo sequence via 3T clinical MRI. The gels were subsequently subjected to rheological frequency and flow sweeps and trends between T2 and rheological parameters were assessed. The relationship between T2 and vitreous humour rheology was further assessed using ex vivo porcine eyes. An optimised imaging technique improved homogeneity of obtained artificial vitreous humour T2 maps. Strong correlations were observed between T2 and various rheological parameters of the gels. Translation to porcine vitreous humour demonstrated that the T2 of biological tissue was related to its viscoelastic properties. This study shows that T2 can be correlated with various rheological parameters within gels. Future investigations will assess the translatability of these findings to live models.


Subject(s)
Magnetic Resonance Imaging/methods , Vitreous Body/metabolism , Animals , Models, Animal , Swine , Viscosity , Vitreous Body/diagnostic imaging
3.
J Cardiovasc Magn Reson ; 22(1): 69, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32951605

ABSTRACT

PURPOSE: Common types of congenital heart disease exhibit a variety of structural and functional variations which may be accompanied by changes in the myocardial microstructure. We aimed to compare myocardial architecture from magnetic resonance diffusion tensor imaging (DTI) in preserved pathology specimens. MATERIALS AND METHODS: Pathology specimens (n = 24) formalin-fixed for 40.8 ± 7.9 years comprised tetralogy of Fallot (TOF, n = 10), dextro-transposition of great arteries (D-TGA, n = 8) five with ventricular septal defect (VSD), systemic right ventricle (n = 4), situs inversus totalis (SIT, n = 1) and levo-TGA (L-TGA, n = 1). Specimens were imaged using a custom spin-echo sequence and segmented automatically according to tissue volume fraction. In each specimen T1, T2, fractional anisotropy, mean diffusivity, helix angle (HA) and sheet angle (E2A) were quantified. Pathologies were compared according to their HA gradient, HA asymmetry and E2A mean value in each myocardial segment (anterior, posterior, septal and lateral walls). RESULTS: TOF and D-TGA with VSD had decreased helix angle gradient by - 0.34°/% and remained symmetric in the septum in comparison to D-TGA without VSD. Helix angle range was decreased by 45°. It was associated with a decreased HA gradient in the right ventricular (RV) wall, i.e. predominant circumferential myocytes. The sheet angle in the septum of TOF was opposing those of the left ventricular (LV) free wall. Univentricular systemic RV had the lowest HA gradient (- 0.43°/%) and the highest HA asymmetry (75%). HA in SIT was linear, asymmetric, and reversed with a sign change at about 70% of the depth at mid-ventricle. In L-TGA with VSD, HA was asymmetric (90%) and its gradients were decreased in the septum, anterior and lateral wall. CONCLUSION: The organization of the myocytes as determined by DTI differs between TOF, D-TGA, L-TGA, systemic RV and SIT specimens. These differences in cardiac structure may further enlighten our understanding of cardiac function in these diverse congenital heart diseases.


Subject(s)
Diffusion Magnetic Resonance Imaging , Heart Ventricles/diagnostic imaging , Myocardium/pathology , Tetralogy of Fallot/diagnostic imaging , Adult , Female , Heart Ventricles/abnormalities , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Predictive Value of Tests , Tetralogy of Fallot/pathology , Tetralogy of Fallot/physiopathology , Ventricular Function, Left , Ventricular Function, Right
4.
J Magn Reson Imaging ; 42(5): 1441-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25865598

ABSTRACT

PURPOSE: To investigate the potential patient risk and interactions between a prototype implantable pressure monitoring device and a 3T clinical magnetic resonance imaging (MRI) machine to guide device design towards MR Conditional safety approval. MATERIALS AND METHODS: The pressure monitor device contained a catheter-mounted piezo-resistive pressure sensor, rechargeable battery, wireless communication system, and inductive pickup coil. Standard testing methods were used to guide experiments to investigate static field induced force and torque, radiofrequency (RF)-induced heating, image artifacts, and the MR's effect on device function. The specific clinical application of intracranial pressure monitoring was considered. RF-induced heating experiments were supported by numerical modeling of the RF body coil, the device, and experimental phantom. RESULTS: Sensing catheter lead length and configuration was an important component of the device design. A short 150 mm length catheter produced a heating effect of less than 2°C and a long 420 mm length catheter caused heating of 7.2°C. Static magnetic field interactions were below standard safety risk levels and the MR did not interfere with device function; however, artifacts have the potential to interfere with image quality. CONCLUSION: Investigation of MR interactions at the prototype stage provides useful implantable device design guidance and confidence that an implantable pressure monitor may be able to achieve MR Conditional safety approval.


Subject(s)
Magnetic Resonance Imaging , Monitoring, Physiologic/instrumentation , Prostheses and Implants , Artifacts , Equipment Design , Equipment Safety , Phantoms, Imaging , Pressure
5.
Am J Physiol Regul Integr Comp Physiol ; 302(11): R1250-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496364

ABSTRACT

It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a narrowing of the extracellular space restricts solute diffusion and acts to direct fluxes into the lens core via the sutures.


Subject(s)
Extracellular Space/metabolism , Homeostasis/physiology , Lens, Crystalline/metabolism , Animals , Biological Transport , Cattle , Contrast Media , Diffusion , Gadolinium , Gadolinium DTPA , Magnetic Resonance Imaging/methods , Microscopy, Confocal , Solutions
6.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R335-42, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21593426

ABSTRACT

Studies using various MRI techniques have shown that a water-protein concentration gradient exists in the ocular lens. Because this concentration is higher in the core relative to the lens periphery, a gradient in refractive index is established in the lens. To investigate how the water-protein concentration profile is maintained, bovine lenses were incubated in different solutions, and changes in water-protein concentration ratio monitored using proton density weighted (PD-weighted) imaging in the absence and presence of heavy water (D(2)O). Lenses incubated in artificial aqueous humor (AAH) maintained the steady state water-protein concentration gradient, but incubating lenses in high extracellular potassium (KCl-AAH) or low temperature (Low T-AAH) caused a collapse of the gradient due to a rise in water content in the core of the lens. To visualize water fluxes, lenses were incubated in D(2)O, which acts as a contrast agent. Incubation in KCl-AAH and low T-AAH dramatically slowed the movement of D(2)O into the core but did not affect the movement of D(2)O into the outer cortex. D(2)O seemed to preferentially enter the lens cortex at the anterior and posterior poles before moving circumferentially toward the equatorial regions. This directionality of D(2)O influx into the lens cortex was abolished by incubating lenses in high KCl-AAH or low T-AAH, and resulted in homogenous influx of D(2)O into the outer cortex. Taken together, our results show that the water-protein concentration ratio is actively maintained in the core of the lens and that water fluxes preferentially enter the lens at the poles.


Subject(s)
Aqueous Humor/physiology , Lens, Crystalline/physiology , Magnetic Resonance Imaging/methods , Animals , Cattle , Deuterium Oxide , Homeostasis , Models, Biological , Organ Culture Techniques , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL