Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Appl Microbiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986506

ABSTRACT

AIMS: This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne) respectively on human microbiota composition, diversity, and metabolism. METHODS AND RESULTS: To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control. CONCLUSIONS: The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139130

ABSTRACT

Bats are natural reservoirs for many emerging viral diseases. That is why their virome is widely studied. But at the same time, studies of their bacterial gut microbiota are limited, creating a degree of uncertainty about the role of bats in global microbial ecology. In this study, we analyzed gut microbiota of insectivorous Nyctalus noctula and Vespertilio murinus from rehabilitation centers from Rostov-on-Don and Moscow, respectively, and fructivorous Carollia perspicillata from the Moscow Zoo based on V3-V4 16S rRNA metagenomic sequencing. We revealed that microbial diversity significantly differs between the insectivorous and fructivorous species studied, while the differences between N. noctula and V. murinus are less pronounced, which shows that bats' gut microbiota is not strictly species-specific and depends more on diet type. In the gut microbiota of synanthropic bats, we observed bacteria that are important for public health and animal welfare such as Bacteroides, Enterobacter, Clostridiaceae, Enterococcus, Ureaplasma, Faecalibacterium, and Helicobacter, as well as some lactic acid bacteria such as Pediococcus, Lactobacillus, Lactococcus, and Weisella. All these bacteria, except for Bacteroides and Weisella, were significantly less abundant in C. perspicillata. This study provides a direct metagenomic comparison of synanthropic insectivorous and zoo fructivorous bats, suggesting future directions for studying these animals' role in microbial ecology.


Subject(s)
Chiroptera , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Metagenome , Bacteria/genetics
3.
Braz J Microbiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789905

ABSTRACT

This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.

4.
Vet Sci ; 10(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38133228

ABSTRACT

Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine large intestine in vitro model was used to evaluate the effect of two PBs, alone or in combination with casein, on swine gut microbiota. As a result, the combination of casein with PB1 had the most beneficial effects on swine gut microbiota, as it increased the relative abundance of some commensal bacteria and two genera (Lactobacillus and Oscillospiraceae UCG-002), which are associated with greater production performance in pigs. At the same time, supplementation with PBs did not lead to an increase in opportunistic pathogens, indicating their safety for pigs. Both PBs showed fewer changes in swine gut microbiota compared to interventions with added casein. In contrast, casein supplementation significantly increased beta diversity and the relative abundance of commensal as well as potentially beneficial bacteria. In conclusion, the combination of casein with PBs, in particular PB1, had the most beneficial effects among the studied supplements in vitro, with respect to microbiota modulation and metabolite production, although this data should be proven in further in vivo studies.

5.
Animals (Basel) ; 13(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067008

ABSTRACT

The role of bats in the global microbial ecology no doubt is significant due to their unique immune responses, ability to fly, and long lifespan, all contributing to pathogen spread. Some of these animals hibernate during winter, which results in the altering of their physiology. However, gut microbiota shifts during hibernation is little studied. In this research, we studied cultivable gut microbiota composition and diversity of Nyctalus noctula before, during, and after hibernation in a bat rehabilitation center. Gut microorganisms were isolated on a broad spectrum of culture media, counted, and identified with mass spectrometry. Linear modeling was used to investigate associations between microorganism abundance and N. noctula physiological status, and alpha- and beta-diversity indexes were used to explore diversity changes. As a result, most notable changes were observed in Serratia liquefaciens, Hafnia alvei, Staphylococcus sciuri, and Staphylococcus xylosus, which were significantly more highly abundant in hibernating bats, while Citrobacter freundii, Klebsiella oxytoca, Providencia rettgeri, Citrobacter braakii, and Pedicoccus pentosaceus were more abundant in active bats before hibernation. The alpha-diversity was the lowest in hibernating bats, while the beta-diversity differed significantly among all studied periods. Overall, this study shows that hibernation contributes to changes in bat cultivable gut microbiota composition and diversity.

6.
Sci Rep ; 13(1): 2306, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759670

ABSTRACT

Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.


Subject(s)
Chiroptera , Coronavirus Infections , Coronavirus , Animals , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/genetics , Genome, Viral , Phylogeny , RNA
7.
Front Vet Sci ; 9: 877360, 2022.
Article in English | MEDLINE | ID: mdl-35711797

ABSTRACT

Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.

8.
Probiotics Antimicrob Proteins ; 13(2): 299-314, 2021 04.
Article in English | MEDLINE | ID: mdl-33580864

ABSTRACT

Apical periodontitis (AP) is a biofilm-associated disease initiated by the invasion of dental pulp by microorganisms from the oral cavity. Eradication of intracanal microbial infection is an important goal of endodontic treatment, and this is typically accomplished by mechanical instrumentation and application of sodium hypochlorite and chlorhexidine. However, these agents are tissue-irritating at higher concentrations and cytotoxic. Certain probiotics have been found effective in controlling marginal periodontitis, as evidenced by reduction of pathogenic bacterial loads, gains in clinical attachment levels, and reduced bleeding on probing. In vitro studies have shown inhibitory activity of some probiotics against endodontic pathogens. Similarly, in vivo studies in rats have demonstrated a positive immuno-modulatory role of probiotics in AP, as manifested by decreased levels of proinflammatory markers and increased levels of anti-inflammatory markers. A role for probiotics in effecting a reduction of bone resorption has also been reported. This review provides an outline of current research into the probiotic management of AP, with a focus on understanding the mechanisms of their direct antagonistic activity against target pathogens and of their beneficial modulation of the immune system.


Subject(s)
Periapical Periodontitis , Probiotics , Animals , Humans , Periapical Periodontitis/therapy , Rats
9.
Front Microbiol ; 12: 615328, 2021.
Article in English | MEDLINE | ID: mdl-33679639

ABSTRACT

Salmonellosis is a foodborne infection caused by Salmonella. Domestic poultry species are one of the main reservoirs of Salmonella, which causes the foodborne infection salmonellosis, and are responsible for many cases of animal-to-human transmission. Keeping backyard chickens is now a growing trend, increasing the frequency of direct contact with the flock and, by consequence, the incidence of Salmonella infections. Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 are probiotic bacilli that produce the bacteriocins subtilosin A and subtilin, respectively. The antimicrobial activity of the two strains was determined against the reference strain Micrococcus luteus ATCC 10420. The cell-free supernatant of B. subtilis KATMIRA1933 inhibited biofilm formation by Salmonella enterica subsp. enterica serovar Hadar, Salmonella enterica subsp. enterica serovar Enteritidis phage type 4, and Salmonella enterica subsp. enterica serovar Thompson by 51.1, 48.3, and 56.9%, respectively. The cell-free supernatant of B. amyloliquefaciens B-1895 inhibited the biofilm formation of these Salmonella strains by 30.4, 28.6, and 35.5%, respectively. These findings suggest that the bacillus strains may have the potential to be used as probiotics and antibiotic alternatives for the control of Salmonella in poultry. The number of planktonic cells was unaffected by treatment with the cell-free supernatant. A co-culture of the Salmonella strains with either bacilli showed no signs of growth inhibition, suggesting that it might have been quorum sensing that is affected by the two Bacillus strains.

10.
Sci Rep ; 11(1): 21075, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702917

ABSTRACT

Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered "living bioreactors" for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.


Subject(s)
Chiroptera/virology , Gastrointestinal Microbiome , Mutagens , Animals , Antioxidants/metabolism , Antiviral Agents , Bacillus , Bacterial Proteins/genetics , Biosensing Techniques , COVID-19 , DNA , DNA Damage , Disease Reservoirs/virology , Escherichia coli/metabolism , Feces , Immune System , Inflammation , Lactic Acid/metabolism , Mass Spectrometry , Mutagenesis , Oxidative Stress , Rec A Recombinases/metabolism , SARS-CoV-2 , Viruses/isolation & purification , Zoonoses/virology
11.
Probiotics Antimicrob Proteins ; 13(5): 1306-1315, 2021 10.
Article in English | MEDLINE | ID: mdl-34132998

ABSTRACT

Possible mechanisms involved in sex-dependent differences in the gut microbiota have a growing interest worldwide, but the effects of probiotics dependence on the gender of the host have remained outside of researchers' attention until now. Previously, our research data described gender-specific differences in the gut microbiota of Armenian Familial Mediterranean fever (FMF) patients. Taking into account the possible association of Prevotella spp. with depressive disorders, the aim of the current investigations was an evaluation of changes in the abundance of gut Prevotella of FMF patients in association with the patient's depression and gender. The differences between healthy and FMF diseased gut microbiota in terms of Prevotella abundance were revealed. In addition, the gender-dependent effects of immunobiotic/psychobiotic Narine on the abundance of gut Prevotella of FMF patients and patients' depression scores were shown by us in this study.


Subject(s)
Familial Mediterranean Fever , Lactobacillus acidophilus , Prevotella , Probiotics , Sex Factors , Depression , Familial Mediterranean Fever/therapy , Female , Gastrointestinal Microbiome , Humans , Male
12.
Animals (Basel) ; 11(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209794

ABSTRACT

One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a "one health" approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts' organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.

13.
Probiotics Antimicrob Proteins ; 13(4): 926-948, 2021 08.
Article in English | MEDLINE | ID: mdl-33738706

ABSTRACT

Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Drug Resistance, Fungal , Probiotics , Candida auris
14.
Andrology ; 9(5): 1467-1480, 2021 09.
Article in English | MEDLINE | ID: mdl-34236146

ABSTRACT

BACKGROUND: Current assessment methods of penile cavernous fibrosis in animal models have limitations due to the inability to provide complex and volume analysis of fibrotic alterations. OBJECTIVE: The aim was to evaluate micro-computed tomography for assessment of cavernous fibrosis and compare it with histological, histochemical, immunohistochemical, and RT-PCR analysis. MATERIALS AND METHODS: A controlled trial was performed involving 25 New Zealand male rabbits with induced testosterone deficiency by orchidectomy. Penile samples were obtained before and after 7, 14, 21, and 84 days from orchidectomy. We consistently performed (a) gray value analysis of corpora cavernosa 3D models reconstructed after micro-computed tomography, (b) morphometry of smooth muscles/connective tissue ratio, collagen type I/III ratio, and area of TGF-beta-1 expression in corpora cavernosa, and (c) RT-PCR of TGF-beta-1 expression. RESULTS: Micro-computed tomography allowed visualization of penile structures at a resolution comparable to light microscopy. Gray values of corpora cavernosa decreased from 1673 (1512-1773) on the initial day to 1184 (1089-1232) on the 21st day (p < 0.005). However, on the 84th day, it increased to 1610 (1551-1768). On 21st and 84th days, there was observed a significant decrease in smooth muscle/connective tissue ratio and a significant increase in collagen type I/III ratio (p < 0.05). TGF-beta1 expression increased on the 84th day according to immunohistochemistry (p < 0.005). RT-PCR was impossible to conduct due to the absence of RNA in obtained samples after micro-CT. DISCUSSION AND CONCLUSIONS: Micro-computed tomography provided 3D visualization of entire corpora cavernosa and assessment of radiodensity alterations by gray value analysis in fibrosis progression. We speculate that gray value changes at early and late fibrosis stages could be related to tissue reorganization. RT-PCR is impossible to conduct on tissue samples studied by micro-CT due to RNA destruction. We also suggest that micro-computed tomography could negatively affect the immunohistochemical outcome, as a significant increase of TGF-beta-1 expression occurs later than histological fibrotic signs.


Subject(s)
Imaging, Three-Dimensional/methods , Penile Induration/diagnostic imaging , Penis/diagnostic imaging , X-Ray Microtomography , Animals , Disease Models, Animal , Male , Muscle, Smooth/diagnostic imaging , Muscle, Smooth/metabolism , Orchiectomy , Penile Induration/chemically induced , Penile Induration/pathology , Penis/metabolism , Penis/pathology , Rabbits , Real-Time Polymerase Chain Reaction , Transforming Growth Factor beta1/metabolism
15.
Front Microbiol ; 11: 1877, 2020.
Article in English | MEDLINE | ID: mdl-32973697

ABSTRACT

Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.

SELECTION OF CITATIONS
SEARCH DETAIL