Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
PLoS One ; 14(2): e0212750, 2019.
Article in English | MEDLINE | ID: mdl-30794652

ABSTRACT

The HLA-G and MICA genes are stimulated under inflammatory conditions and code for soluble (sMICA and sHLA-G) or membrane-bound molecules that exhibit immunomodulatory properties. It is still unclear whether they would have a synergistic or antagonistic effect on the immunomodulation of the inflammatory response, such as in chronic kidney disease (CKD), contributing to a better prognosis after the kidney transplantation. In this study, we went from genetic to plasma analysis, first evaluating the polymorphism of MICA, NKG2D and HLA-G in a cohort from Southern Brazil, subdivided in a control group of individuals (n = 75), patients with CKD (n = 94), and kidney-transplant (KT) patients (n = 64). MICA, NKG2D and HLA-G genotyping was performed by polymerase chain reaction with specific oligonucleotide probes, Taqman and Sanger sequencing, respectively. Levels of soluble forms of MICA and HLA-G were measured in plasma with ELISA. Case-control analysis showed that the individuals with haplotype HLA-G*01:01/UTR-4 have a lower susceptibility to develop chronic kidney disease (OR = 0.480; p = 0.032). Concerning the group of kidney-transplant patients, the HLA-G genotypes +3010 GC (rs1710) and +3142 GC (rs1063320) were associated with higher risk for allograft rejection (OR = 5.357; p = 0.013 and OR = 5.357, p = 0.013, respectively). Nevertheless, the genotype +3010 GG (OR = 0.136; p = 0.041) was associated with kidney allograft acceptance, suggesting that it is a protection factor for rejection. In addition, the phenotypic analysis revealed higher levels of sHLA-G (p = 0.003) and sMICA (p < 0.001) in plasma were associated with the development of CKD. For patients who were already under chronic pathological stress and underwent a kidney transplant, a high sMICA (p = 0.001) in pre-transplant proved to favor immunomodulation and allograft acceptance. Even so, the association of genetic factors with differential levels of soluble molecules were not evidenced, we displayed a synergistic effect of sMICA and sHLA-G in response to inflammation. This increase was observed in CKD patients, that when undergo transplantation, had this previous amount of immunoregulatory molecules as a positive factor for the allograft acceptance.


Subject(s)
Graft Rejection/genetics , HLA-G Antigens/genetics , Histocompatibility Antigens Class I/genetics , Kidney Transplantation , Polymorphism, Genetic , Renal Insufficiency, Chronic/genetics , Adult , Allografts , Case-Control Studies , Female , Graft Rejection/immunology , Graft Rejection/pathology , HLA-G Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/surgery , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL