Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Therm Biol ; 97: 102807, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33863423

ABSTRACT

The purpose of this study was to evaluate the circadian rhythm of core temperature (Tcore) across aging in Spontaneously Hypertensive Rats (SHR) with comparison to the two rat strains often used as their normotensive control animals, namely, Wistar (WIS) and Wistar Kyoto (WKY). METHODS: WIS, WKY and SHR rats were subdivided into three different groups according their age: WIS16, WIS48, WIS72, WKY16, WKY48, WKY72, SHR16, SHR48 and SHR72 weeks-old. Body mass and blood pressure were periodically measured along the experiments. All animal group had their circadian rhythm of Tcore evaluated over three consecutive days (72 h) by telemetry using an implanted temperature sensor. The Tcore circadian rhythm was averaged in 1-h blocks and analyzed using the cosinor method. RESULTS: Sixteen-week-old SHR (SHR16) presented higher Tcore than WIS16 (from 06am to 06pm) and WKY16 (from 07am to 06pm). Both normotensive groups exhibited increases in Tcore during circadian rhythm with aging. The cosinor analysis showed no differences between strains and ages for the acrophase. An age effect on the SHR strain (SHR16 < SHR72) was observed regarding the amplitude. SHR16 had higher values regarding MESOR compared to WIS16 and WKY16. In addition, WIS72 and WKY72 showed higher values than WIS16 and WKY16, respectively. Finally, no differences were observed in the strength rhythm analysis. CONCLUSIONS: SHR presented impaired thermoregulatory control at only 16 weeks of age when showing a higher body temperature during the activity phase, while other circadian rhythm parameters showed no differences across aging. Therefore, in taking our results as a whole we can conclude that WIS and WKY are appropriate Wistar strains to be used as normotensive controls for SHR.


Subject(s)
Aging/physiology , Body Temperature , Circadian Rhythm/physiology , Hypertension/physiopathology , Animals , Models, Animal , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar
2.
J Therm Biol ; 83: 30-36, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31331522

ABSTRACT

This study aimed to evaluate the changes in brain (Tbrain) and abdominal (Tabd) temperatures in spontaneously hypertensive rats (SHRs) following fatiguing exercise. Male normotensive Wistar rats (NWRs) and SHRs were used at 16 weeks of age. Their arterial pressure was measured by tail plethysmography prior to the experiments to confirm the hypertensive status of the SHRs. Then, the rats underwent implantation of an abdominal temperature sensor to measure Tabd and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain. After a familiarization period, each animal was subjected to incremental speed exercises until fatigue in either a temperate (25 °C) or warm (32 °C) environment, followed by a 60-min post-exercise period at the same temperature at which they exercised. Tbrain, Tabd and tail-skin temperature (Tskin) were measured every min throughout the experiments. SHRs exhibited higher Tabd values than NWRs, and these higher values were transiently and persistently observed at 25 °C and 32 °C, respectively. For example, at 32 °C, Tabd was 0.84 °C higher in SHRs at the 25th min (large effect size). In contrast, regardless of the ambient temperature, SHRs exhibited similar Tbrain values as NWRs, indicating preserved Tbrain regulation following exercise in hypertensive rats. SHRs presented higher Tskin during the last half of the post-exercise period at 25 °C, whereas no inter-group differences were observed at 32 °C. In conclusion, the present results highlight that SHRs, an animal model that mimics uncontrolled essential hypertension in humans, exhibited greater impairments in regulating Tabd than Tbrain during the post-exercise period.


Subject(s)
Abdomen/physiology , Body Temperature Regulation , Cerebral Cortex/physiology , Hypertension/physiopathology , Physical Exertion , Animals , Body Temperature , Male , Rats , Rats, Inbred SHR , Rats, Wistar
3.
J Sports Sci Med ; 13(3): 695-701, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25177201

ABSTRACT

The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

4.
Clin Exp Pharmacol Physiol ; 39(2): 155-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22288490

ABSTRACT

Hypertension leads to electrophysiological changes in the heart. Chronic exercise induced by a treadmill-running programme (TRP) is considered a potential non-pharmacological treatment for hypertension and may have implications in heart remodelling. However, it is not known whether the TRP is able to improve the electrophysiological properties of the heart in spontaneously hypertensive rats (SHR). In the present study, we investigated whether TRP affects the electrical properties of left ventricular (LV) myocytes isolated from different layers of the LV wall of SHR. Male SHR were divided into exercised (chronic treadmill running for 8 weeks; CEX-SHR) and sedentary (SED-SHR) groups. Age-matched normotensive Wistar male rats served as controls. Action potentials (AP) and transient outward potassium current (I(to) ) were recorded in subepicardial (EPI) and subendocardial (ENDO) LV myocytes. In normotensive controls, AP duration (APD) was longer in ENDO cells than in EPI cells. This sort of transmural heterogeneity in the LV was not observed in sedentary SHR and was partially restored in SHR subject to chronic exercise. This partial recovery was associated with an increase in I(to) density in EPI cells but not in ENDO cells. The electrophysiological changes observed in the CEX-SHR group were not accompanied by either amelioration of systolic blood pressure or a reduction in heart hypertrophy. These findings imply that a TRP is able to improve the electrophysiological parameters of isolated cardiac myocytes in SHR. This sort of adaptation contributes to the overall improvement of heart physiology in this model.


Subject(s)
Action Potentials , Hypertension/physiopathology , Hypertension/therapy , Myocytes, Cardiac/physiology , Physical Conditioning, Animal , Ventricular Function, Left , Animals , Heart Ventricles/cytology , Male , Myocardial Contraction , Rats , Rats, Inbred SHR , Rats, Wistar
5.
J Sports Med Phys Fitness ; 60(5): 800-805, 2020 May.
Article in English | MEDLINE | ID: mdl-32141278

ABSTRACT

BACKGROUND: The aim of the present study was to investigate the exercise capacity of hypertensive rats at different stages of development of hypertension and to determine the most suitable index to evaluate the exercise capacity in different strains. METHODS: Male spontaneously hypertensive rat (SHR) and normotensive Wistar rats (NWR) of 5, 8, 12 and 16 weeks were submitted to the exercise capacity test. The exercise running time was measured and the workload was calculated. RESULTS: Normotensive and hypertensive rats when assess the exercise capacity by exercise running time exhibited a reduction in exercise performance over time. Moreover, hypertensive rats showed lower exercise capacity compared to normotensive control when analyzed by workload. CONCLUSIONS: The present results indicate that hypertensive rats exhibit reduced exercise capacity compared to normotensive rats regardless of age assessed. Beside that, in experiments with strains with different body mass the most reliable index to assess exercise capacity is workload.


Subject(s)
Exercise Tolerance/physiology , Physical Conditioning, Animal/methods , Physical Exertion/physiology , Animals , Hypertension/physiopathology , Male , Rats , Rats, Inbred SHR , Rats, Wistar
6.
J Appl Physiol (1985) ; 107(2): 593-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19498092

ABSTRACT

The aim of the present study was to evaluate the Ca2+ handling and contractility properties of cardiomyocytes isolated from rats with high intrinsic aerobic exercise capacity. Standard-performance (SP) and high-performance (HP) rats were categorized with a treadmill progressive exercise test according to the exercise time to fatigue (TTF). The SP group included rats with TTF between 16.63 and 46.57 min, and the HP group included rats with TTF>46.57 min. Isolated ventricular cardiomyocytes were dissociated from the hearts of SP and HP rats, and intracellular global Ca2+ ([Ca2+]i) transients were measured. The [Ca2+]i transient peak was increased in the HP group relative to the SP group (5.54+/-0.31 vs. 4.18+/-0.12 F/F0; P

Subject(s)
Calcium Signaling , Exercise Tolerance , Heart Ventricles/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Physical Exertion , Animals , Calcium-Binding Proteins/metabolism , Kinetics , Male , Muscle Fatigue , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Time Factors
7.
Neurosci Lett ; 413(1): 1-5, 2007 Feb 08.
Article in English | MEDLINE | ID: mdl-17250962

ABSTRACT

The aim of this study was to evaluate the effects of stimulation of the central cholinergic pathway on the regulation of post-exercise tail heat loss in rats. Either 2.0microL of 25x10(-3)M physostigmine (Phy) or 0.15M NaCl solution (Sal) were injected into the right lateral cerebral ventricle of both resting (n=8) and post-exercising rats (n=6; 24mmin(-1); 25min; 5% inclination). Tail temperature (Ttail) was measured using a thermistor taped to the tail, and intraperitoneal temperature, an index of core temperature (Tc), was recorded using a telemetry sensor implanted into the peritoneal cavity. In resting rats, Phy induced an increase in both Ttail (26.8+/-0.3 degrees C Phy versus 25.2+/-0.6 degrees C Sal; P<0.05) and in heat loss index (0.26+/-0.03 Phy versus 0.14+/-0.05 Sal; P<0.05; 30min after injection), and a decrease in Tc compared to the Sal injection group (36.6+/-0.2 degrees C Phy versus 37.0+/-0.2 degrees C Sal; P<0.05). In post-exercising rats, Phy injection attenuated the decrease in both T(tail) (28.3+/-0.8 degrees C Phy versus 26.4+/-0.6 degrees C Sal; P<0.05) and heat loss index (0.37+/-0.07 Phy versus 0.19+/-0.02 Sal; P<0.05) without altering Tc. We conclude that activation of the central cholinergic pathway increases post-exercise tail heat loss in rats.


Subject(s)
Acetylcholine/metabolism , Body Temperature Regulation/physiology , Physical Conditioning, Animal , Signal Transduction/physiology , Tail/physiology , Animals , Cholinesterase Inhibitors/pharmacology , Injections, Intraventricular/methods , Male , Physostigmine/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Skin Temperature/physiology
SELECTION OF CITATIONS
SEARCH DETAIL