ABSTRACT
Northern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high-latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs and Sphagnum expansion, coinciding with climate warming which has also influenced C accumulation during the last ~100 years. The rapid shifts towards drier bog communities and an expansion of Sphagnum sect. Acutifolia after 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration of Sphagnum-dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate-driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high-latitude non-permafrost peatlands where wet sedge fens may transition to drier Sphagnum bog communities due to warmer and longer growing seasons.
Subject(s)
Carbon Sequestration , Sphagnopsida , Carbon , Ecosystem , Soil , WetlandsABSTRACT
High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.
Subject(s)
Amoeba , Permafrost , Climate Change , Hydrology , SoilABSTRACT
Cores (15 to 40â¯cm of depth) were collected from 11 lakes of the Songnen Plain in northeastern China to reconstruct changes in potentially harmful trace element (PHTE) inputs as tracers of human activities. In each profile, most PHTE enrichment factors do not differ significantly from the pre-industrial values (EFâ¯<â¯1.5), except for Cd (EFâ¯=â¯2-5.5). This shows that detrital material accounts for a large part of the PHTE supply to the Songnen Plain lakes. Radiometric dating of the cores (210Pb, 137Cs) showed that Cd contamination started from the mid-20th century and sharply increased in the 1980s', a pattern that matches the rapid economic and industrial growth of China. Comparison with other records in China suggests that a large part of the anthropogenic Cd in these lakes is likely local in origin. Although the Cd inputs, controlled by carbonate minerals, probably originated from a combination of sources, an intensification in agricultural practices, through the use of chemical fertilizers, manure and wastewater would explain these discrepancies between records. These findings highlight the importance of local factors on the Cd geochemical cycle in China. The large anthropogenic component of the Cd inventory compared to other PHTEs (Cu, Ni, Pb, Sb, V, Zn) and its high toxicity indicate that it should be prioritized in future environmental management.
ABSTRACT
China is one of the fastest-growing economies of the late 20th and early 21st centuries, and heavy metal emissions have increased in parallel with rapid industrialization and urbanization. Over the last decade, several studies of geochemical records from peat have reconstructed changes in atmospheric metal pollution in China. We review the peat records that detail the history of atmospheric metal pollution over the last two centuries in NE China. The ecological risk (ER) of accumulated metals and their potential eco-toxicological effects, through threshold and probable effect concentrations (TEC and PEC), are also evaluated. Peat records of metals show an increase of pollution loads in the environment over the pre-industrial level during the past two centuries, with an unprecedented increase in China over the last 60â¯years. There is generally good agreement between geochemical peat records from NE China and others records elsewhere in China. However, some discrepancies are observed especially with Hg records from lake sediments. These discrepancies could be explained by several factors, including post-depositional processes or uncertainties arising from dating methods. The ecological risk of heavy metals is found to be relatively weak in the remote and high-altitude environment in NE China. Although, most metals are under the TEC, Pb concentrations usually surpass it and are getting close to the PEC which indicates increasing ecological risks. Some areas of improvement have been highlighted such as the need for more long-term studies on atmospheric metals and a greater number of Pb isotopes records to better capture the long history of human activity and the spatial variability in metal deposition of the region.
Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Ecosystem , Metals, Heavy/analysis , Soil , Atmosphere/chemistry , China , UrbanizationABSTRACT
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.