Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32619424

ABSTRACT

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Subject(s)
Immunologic Memory/physiology , Lymphoma, Large B-Cell, Diffuse/pathology , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/chemistry , Chromatin/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Histone Deacetylases/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Co-Repressor 2/metabolism , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic
2.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625940

ABSTRACT

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Subject(s)
Carrier Proteins , Ubiquitin-Protein Ligases , Protein Binding , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Ubiquitin/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism
3.
J Biol Chem ; 295(42): 14458-14472, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32796038

ABSTRACT

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.


Subject(s)
Antifungal Agents/chemistry , Candida/metabolism , Fungal Proteins/metabolism , Antifungal Agents/metabolism , Binding Sites , Calcineurin/chemistry , Calcineurin/metabolism , Drug Design , Fungal Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Dynamics Simulation , Mycoses/microbiology , Mycoses/pathology
4.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27220849

ABSTRACT

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Subject(s)
Cell Nucleus/metabolism , Macromolecular Substances/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , Repressor Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Domains , Ubiquitination , Zinc Finger Protein Gli3
5.
J Virol ; 91(23)2017 12 01.
Article in English | MEDLINE | ID: mdl-28904193

ABSTRACT

The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.


Subject(s)
Measles virus/drug effects , Measles virus/genetics , Mutation , Oligopeptides/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Animals , Antiviral Agents/pharmacology , Benzamides/pharmacology , Chlorocebus aethiops , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Membrane Fusion/drug effects , Models, Molecular , Protein Binding , Vero Cells , Viral Fusion Proteins/chemistry , Virus Internalization/drug effects
7.
Anal Chem ; 88(9): 4742-50, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27049760

ABSTRACT

This work describes the application of the catch-and-release electrospray ionization-mass spectrometry (CaR-ESI-MS) assay, implemented using picodiscs (complexes comprised of saposin A and lipids, PDs), to screen mixtures of glycolipids (GLs) against water-soluble proteins to detect specific interactions. To demonstrate the reliability of the method, seven gangliosides (GM1, GM2, GM3, GD1a, GD1b, GD2, and GT1b) were incorporated, either individually or as a mixture, into PDs and screened against two lectins: the B subunit homopentamer of cholera toxin (CTB5) and a subfragment of toxin A from Clostridium difficile (TcdA-A2). The CaR-ESI-MS results revealed that CTB5 binds to six of the gangliosides (GM1, GM2, GM3, GD1a, GD1b, and GT1b), while TcdA-A2 binds to five of them (GM1, GM2, GM3, GD1a, and GT1b). These findings are consistent with the measured binding specificities of these proteins for ganglioside oligosaccharides. Screening mixtures of lipids extracted from porcine brain and a human epithelial cell line against CTB5 revealed binding to multiple GM1 isoforms as well as to fucosyl-GM1, which is a known ligand. Finally, a comparison of the present results with data obtained with the CaR-ESI-MS assay implemented using nanodiscs (NDs) revealed that the PDs exhibited similar or superior performance to NDs for protein-GL binding measurements.


Subject(s)
Bacterial Toxins/analysis , Cholera Toxin/analysis , Enterotoxins/analysis , Gangliosides/chemistry , Lectins/chemistry , Spectrometry, Mass, Electrospray Ionization , Humans
8.
Anal Chem ; 88(19): 9524-9531, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27532319

ABSTRACT

Saposin A (SapA) lipoprotein discs, also known as picodiscs (PDs), represent an attractive method to solubilize glycolipids for protein interaction studies in aqueous solution. Recent electrospray ionization mass spectrometry (ESI-MS) data suggest that the size and composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing PDs at neutral pH differs from those of N,N-dimethyldodecylamine N-oxide determined by X-ray crystallography. Using high-resolution ESI-MS, multiangle laser light scattering (MALLS), and molecular dynamics (MD) simulations, the composition, heterogeneity, and structure of POPC-PDs in aqueous ammonium acetate solutions at pH 4.8 and 6.8 were investigated. The ESI-MS and MALLS data revealed that POPC-PDs consist predominantly of (SapA dimer + iPOPC) complexes, with i = 23-29, and have an average molecular weight (MW) of 38.2 ± 3.3 kDa at pH 4.8. In contrast, in freshly prepared solutions at pH 6.8, POPC-PDs are composed predominantly of (SapA tetramer + iPOPC) complexes, with i = 37-60, with an average MW of 68.0 ± 2.7 kDa. However, the (SapA tetramer + iPOPC) complexes are unstable at neutral pH and convert, over a period of hours, to (SapA trimer + iPOPC) complexes, with i = 29-36, with an average MW of 51.1 ± 2.9 kDa. The results of molecular modeling suggest spheroidal structures for the (SapA dimer + iPOPC), (SapA trimer + iPOPC), and (SapA tetramer + iPOPC) complexes in solution. Comparison of measured collision cross sections (Ω) with values calculated for gaseous (SapA dimer + 26POPC)8+, (SapA trimer + 33POPC)12+, and (SapA tetramer + 42POPC)16+ ions produced from modeling suggests that the solution structures are largely preserved in the gas phase, although the lipids do not maintain regular bilayer orientations.


Subject(s)
Lipoproteins/chemistry , Particle Size , Saposins/chemistry , Acetates/chemistry , Animals , Chickens , Gases/chemistry , Horses , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Weight , Phosphatidylcholines/chemistry , Spectrometry, Mass, Electrospray Ionization
9.
Anal Chem ; 87(8): 4402-8, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25803566

ABSTRACT

Protein interactions with glycolipids are implicated in diverse cellular processes. However, the study of protein-glycolipid complexes remains a significant experimental challenge. Here, we describe a powerful new assay that combines electrospray ionization mass spectrometry (ESI-MS) and picodiscs, which are composed of human sphingolipid activator protein saposin A and a small number of phospholipids, to display glycolipids in a lipid environment for protein-glycolipid interaction studies in aqueous solution. Time-resolved measurements of enzyme catalyzed hydrolysis of glycolipid substrates and the detection of low, moderate, and high affinity protein-glycolipid interactions serve to demonstrate the reliability and versatility of the assay.


Subject(s)
Glycolipids/chemistry , Saposins/chemistry , Glycolipids/metabolism , Humans , Hydrolysis , Neuraminidase/chemistry , Neuraminidase/metabolism , Saposins/metabolism , Spectrometry, Mass, Electrospray Ionization , Time Factors
10.
Biochem Biophys Res Commun ; 462(1): 1-7, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25839658

ABSTRACT

Escherichia Coli GnsA is a regulator of phosphatidylethanolamine synthesis and functions as a suppressor of both a secG null mutation and fabA6 mutations. GnsA may also be a toxin with the cognate antitoxin YmcE. Here we report the crystal structure of GnsA to 1.8 Å. GnsA forms a V shaped hairpin structure that is tightly associated into a homodimer. Our comprehensive structural study suggests that GnsA is structurally similar to an outer membrane protein, suggesting a function of protein binding.


Subject(s)
Escherichia coli Proteins/chemistry , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding
11.
Proc Natl Acad Sci U S A ; 109(8): 2908-12, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22308394

ABSTRACT

The saposins are small, membrane-active proteins that exist in both soluble and lipid-bound states. Saposin A has roles in sphingolipid catabolism and transport and is required for the breakdown of galactosylceramide by ß-galactosylceramidase. In the absence of lipid, saposin A adopts a closed monomeric apo conformation typical of this family. To study a lipid-bound state of this protein, we determined the crystal structure of saposin A in the presence of detergent to 1.9 Å resolution. The structure reveals two chains of saposin A in an open conformation encapsulating 40 internally bound detergent molecules organized in a highly ordered bilayer-like hydrophobic core. The complex provides a high-resolution view of a discoidal lipoprotein particle in which all of the internalized acyl chains are resolved. Saposin A lipoprotein discs exhibit limited selectivity with respect to the incorporated lipid, and can solubilize phospholipids, sphingolipids, and cholesterol into discrete, monodisperse particles with mass of approximately 27 kDa. These discs may be the smallest possible lipoprotein structures that are stabilized by lipid self-assembly.


Subject(s)
Lipoproteins/chemistry , Saposins/chemistry , Crystallography, X-Ray , Detergents/chemistry , Lipoproteins, HDL/chemistry , Models, Molecular , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Protein Structure, Secondary , Surface-Active Agents/chemistry
12.
Eur J Cell Biol ; 103(2): 151414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640594

ABSTRACT

The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.


Subject(s)
GTP Phosphohydrolases , Guanosine Triphosphate , Membrane Proteins , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/chemistry , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Humans , Guanosine Triphosphate/metabolism , Crystallography, X-Ray , Ligands , Mutation , Models, Molecular
13.
Nat Commun ; 14(1): 5871, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735473

ABSTRACT

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


Subject(s)
Leukemia , Transcription Factors , Animals , Male , Mice , Co-Repressor Proteins , Gene Expression Regulation , Genes, Regulator
14.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793435

ABSTRACT

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

15.
ACS Cent Sci ; 8(5): 571-580, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35647281

ABSTRACT

High-throughput experimentation (HTE) seeks to accelerate the exploration of materials space by uniting robotics, combinatorial methods, and parallel processing. HTE is particularly relevant to metal halide perovskites (MHPs), a diverse class of optoelectronic materials with a large chemical space. Here we develop an HTE workflow to synthesize and characterize light-emitting MHP single crystals, allowing us to generate the first reported data set of experimentally derived photoluminescence spectra for low-dimensional MHPs. We leverage the accelerated workflow to optimize the synthesis and emission of a new MHP, methoxy-phenethylammonium lead iodide ((4-MeO-PEAI)2-PbI2). We then synthesize 16 000 MHP single crystals and measure their photoluminescence to study the effects of synthesis parameters and compositional engineering on the emission intensity of 54 distinct MHPs: we achieve an acceleration factor of more than 100 times over previously reported HTE MHP synthesis and characterization methods. Using insights derived from this analysis, we screen an existing database for new, potentially emissive MHPs. On the basis of the Tanimoto similarity of the bright available emitters, we present our top candidates for future exploration. As a proof of concept, we use one of these (3,4-difluorophenylmethanamine) to synthesize an MHP which we find has a photoluminescence quantum yield of 10%.

16.
J Mol Biol ; 434(9): 167527, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35257782

ABSTRACT

Ral Guanine Nucleotide Dissociation Stimulator Like 1 (RGL1) is a RAS effector protein that activates Ral GTPase by stimulating nucleotide exchange. Most structures of RAS-effector complexes are for the HRAS isoform; relatively few KRAS-effector structures have been solved, even though KRAS mutations are more frequent in human cancers. We determined crystal structures of KRAS/RGL1-RAS-association (RA) domain complexes and characterized the interaction in solution using nuclear magnetic resonance spectroscopy, size-exclusion chromatography combined with multi-angle light scattering and biolayer interferometry. We report structures of wild-type KRAS and the oncogenic G12V mutant in complex with the RA domain of RGL1 at < 2 Å resolution. KRASWT/RGL1-RA crystallized as a 1:1 heterodimer, whilst KRASG12V/RGL1-RA crystallized as a heterotetrameric structure in which RGL1-RA dimerized via domain-swapping the C-terminal beta-strand. Solution data indicated that KRASWT and KRASG12V in complex with RGL1-RA both exist predominantly as 1:1 dimers, while tetramerization occurs through very slow association. Through detailed structural analyses, the distance and angle between RAS α1 helix and RBD/RA α1 helix were found to differ significantly among RAS and RBD/RA complexes. The KRAS/RGL1-RA structures possess some of the largest α1RAS/α1Effector distances (21.7-22.2 Å), whereas the corresponding distances in previously reported RAS/RAF complexes are significantly shorter (15.2-17.7 Å). Contact map analysis identified unique structural signatures involving contacts between the ß1-ß2 loop of RA and the α1 helix of RAS, clearly distinguishing the KRAS/RGL1-RA (and other RAS/RA complexes) from RAS/RBD complexes. These results demonstrate that RAS effectors employ an assortment of finely-tuned docking surfaces to achieve optimal interactions with RAS.


Subject(s)
Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors/chemistry , Humans , Mutation , Protein Domains , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics
17.
Nat Med ; 10(12): 1329-35, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15531890

ABSTRACT

The BTB/POZ transcriptional repressor and candidate oncogene BCL6 is frequently misregulated in B-cell lymphomas. The interface through which the BCL6 BTB domain mediates recruitment of the SMRT, NCoR and BCoR corepressors was recently identified. To determine the contribution of this interface to BCL6 transcriptional and biological properties, we generated a peptide that specifically binds BCL6 and blocks corepressor recruitment in vivo. This inhibitor disrupts BCL6-mediated repression and establishment of silenced chromatin, reactivates natural BCL6 target genes, and abrogates BCL6 biological function in B cells. In BCL6-positive lymphoma cells, peptide blockade caused apoptosis and cell cycle arrest. BTB domain peptide inhibitors may constitute a novel therapeutic agent for B-cell lymphomas.


Subject(s)
B-Lymphocytes/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Genes, Regulator/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Peptides/metabolism , Amino Acid Motifs/genetics , B-Lymphocytes/metabolism , Blotting, Western , DNA-Binding Proteins/metabolism , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Receptor Co-Repressor 1 , Nuclear Receptor Co-Repressor 2 , Protein Binding , Protein Structure, Tertiary/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-6 , Repressor Proteins/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
18.
Brain ; 133(Pt 7): 2123-35, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20554658

ABSTRACT

Distal myopathies are a heterogeneous group of disorders characterized by progressive weakness and muscular atrophy, beginning in distal limb muscles and affecting proximal limb muscles at a later stage. We studied a large German kindred with 10 affected members. Weakness and atrophy of the anterior tibial muscles started between the ages of 8 and 16 years, followed by atrophy of intrinsic hand muscles. Progression was slow, and patients retained the ability to walk until the seventh decade. Serum creatinine kinase levels were increased in the range of 150-1400 U/l. Muscle biopsies showed myopathic changes, whereas immunohistochemistry showed normal expression of marker proteins for muscular dystrophies. Patients had reduced sensation with stocking-glove distribution in the distal limbs in later life. Nerve conduction studies revealed no evidence of neuropathy. Genome-wide linkage analysis in this family revealed a new locus for distal myopathy at 9p21.2-p22.3 (multipoint logarithm of the odds ratio=4.21). By positional cloning we found a heterozygous mutation L95F in the Kelch-like homologue 9 gene, encoding a bric-a-brac Kelch protein. Molecular modelling indicated that the mutation may interfere with the interaction of the bric-a-brac domain with Cullin 3. Coimmunoprecipitation experiments confirmed that the mutation reduces association with Cullin 3 in the Kelch-like homologue 9-Cullin 3-E3 ubiquitin ligase complex, which is involved in ubiquitin-dependent protein degradation. We identified a unique form of early onset autosomal dominant distal myopathy which is associated with a Kelch-like homologue 9 mutation and interferes with normal skeletal muscle through a novel pathogenetic mechanism.


Subject(s)
Carrier Proteins/genetics , Distal Myopathies/diagnosis , Distal Myopathies/genetics , Mutation, Missense , Adolescent , Adult , Age of Onset , Aged , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Line , Child , Cullin Proteins/antagonists & inhibitors , Cullin Proteins/genetics , Cullin Proteins/metabolism , Female , Genes, Dominant/genetics , Genetic Linkage/genetics , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Pedigree
19.
Proc Natl Acad Sci U S A ; 105(35): 12861-6, 2008 Sep 02.
Article in English | MEDLINE | ID: mdl-18753631

ABSTRACT

Lipopeptide detergents (LPDs) are a new class of amphiphile designed specifically for the structural study of integral membrane proteins. The LPD monomer consists of a 25-residue peptide with fatty acyl chains linked to side chains located at positions 2 and 24 of the peptide. LPDs are designed to form alpha-helices that self-assemble into cylindrical micelles, providing a more natural interior acyl chain packing environment relative to traditional detergents. We have determined the crystal structure of LPD-12, an LPD coupled to two dodecanoic acids, to a resolution of 1.20 A. The LPD-12 monomers adopt the target conformation and associate into cylindrical octamers as expected. Pairs of helices are strongly associated as Alacoil-type antiparallel dimers, and four of these dimers interact through much looser contacts into assemblies with approximate D(2) symmetry. The aligned helices form a cylindrical shell with a hydrophilic exterior that protects an interior hydrophobic cavity containing the 16 LPD acyl chains. Over 90% of the methylene/methyl groups from the acylated side chains are visible in the micelle interiors, and approximately 90% of these adopt trans dihedral angle conformations. Dodecylmaltoside (DDM) was required for the crystallization of LPD-12, and we find 10-24 ordered DDM molecules associated with each LPD assembly, resulting in an overall micelle molecular weight of approximately 30 kDa. The structures confirm the major design objectives of the LPD framework, and reveal unexpected features that will be helpful in the engineering additional versions of lipopeptide amphiphiles.


Subject(s)
Detergents/chemistry , Lipids/chemistry , Peptides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Glucosides/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary
20.
J Med Chem ; 64(2): 1139-1169, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33444025

ABSTRACT

The essential eukaryotic chaperone Hsp90 regulates the form and function of diverse client proteins, many of which govern thermotolerance, virulence, and drug resistance in fungal species. However, use of Hsp90 inhibitors as antifungal therapeutics has been precluded by human host toxicities and suppression of immune responses. We recently described resorcylate aminopyrazoles (RAPs) as the first class of Hsp90 inhibitors capable of discriminating between fungal (Cryptococcus neoformans, Candida albicans) and human isoforms of Hsp90 in biochemical assays. Here, we report an iterative structure-property optimization toward RAPs capable of inhibiting C. neoformans growth in culture. In addition, we report the first X-ray crystal structures of C. neoformans Hsp90 nucleotide binding domain (NBD), as the apoprotein and in complexes with the non-species-selective Hsp90 inhibitor NVP-AUY922 and three RAPs revealing unique ligand-induced conformational rearrangements, which reaffirm the hypothesis that intrinsic differences in protein flexibility can confer selective inhibition of fungal versus human Hsp90 isoforms.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Fungi/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Antifungal Agents/chemistry , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Protein Binding , Pyrazoles/chemistry , Species Specificity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL