Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters

Publication year range
1.
Small ; 18(29): e2201106, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35695331

ABSTRACT

There is a growing need to control and tune nanoparticles (NPs) to increase their stability and effectiveness, especially for photo- and electrochemical energy conversion applications. Exsolved particles are well anchored and can be re-shaped without changing their initial location and structural arrangement. However, this usually involves lengthy treatments and use of toxic gases. Here, the galvanic replacement/deposition method is used, which is simpler, safer, and leads to a wealth of new hybrid nanostructures with a higher degree of tailorability. The produced NiAu bimetallic nanostructures supported on SrTiO3 display exceptional activity in plasmon-assisted photoelectrochemical (PEC) water oxidation reactions. In situ scanning transmission electron microscopy is used to visualize the structural evolution of the plasmonic bimetallic structures, while theoretical simulations provide mechanistic insight and correlate the surface plasmon resonance effects with structural features and enhanced PEC performance. The versatility of this concept in shifting catalytic modes to the hydrogen evolution reaction is demonstrated by preparing hybrid NiPt bimetallic NPs of low Pt loadings on highly reduced SrTiO3 supports. This powerful methodology enables the design of supported bimetallic nanomaterials with tunable morphology and catalytic functionalities through minimal engineering.

2.
Angew Chem Int Ed Engl ; 61(48): e202209334, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36205032

ABSTRACT

Laboratory-based X-ray absorption spectroscopy (XAS) and especially X-ray absorption near-edge structure (XANES) offers new opportunities in catalyst characterization and presents not only an alternative, but also a complementary approach to precious beamtime at synchrotron facilities. We successfully designed a laboratory-based setup for performing operando, quasi-simultaneous XANES analysis at multiple K-edges, more specifically, operando XANES of mono-, bi-, and trimetallic CO2 hydrogenation catalysts containing Ni, Fe, and Cu. Detailed operando XANES studies of the multielement solid catalysts revealed metal-dependent differences in the reducibility and re-oxidation behavior and their influence on the catalytic performance in CO2 hydrogenation. The applicability of operando laboratory-based XANES at multiple K-edges paves the way for advanced multielement catalyst characterization complementing detailed studies at synchrotron facilities.

3.
Phys Chem Chem Phys ; 22(7): 3779-3783, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32016237

ABSTRACT

Direct evidence of N2 formation after annealing of (ZnO)1-x(GaN)x alloys was revealed. N2 was trapped by VZn+Ga-clusters, forming faceted voids along grain boundaries. This study shows that N-N bonding is a competitive path for nitrogen after annealing, in addition to the increasing Ga-N bonds, indicating that N in O substitution sites (NO) is not a stable configuration.

4.
Angew Chem Int Ed Engl ; 59(48): 21397-21402, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-32902113

ABSTRACT

Herein, we report the discovery of a toroidal inorganic cluster of zirconium(IV) oxysulfate of unprecedented size with the formula Zr70 (SO4 )58 (O/OH)146 ⋅x(H2 O) (Zr70 ), which displays different packing of ring units and thus several polymorphic crystal structures. The ring measures over 3 nm across, has an inner cavity of 1 nm and displays a pseudo-10-fold rotational symmetry of Zr6 octahedra bridged by an additional Zr in the outer rim of the ring. Depending on the co-crystallizing species, the rings form various crystalline phases in which the torus units are connected in extended chain and network structures. One phase, in which the ring units are arranged in layers and form one-dimensional channels, displays high permanent porosity (BET surface area: 241 m2 g-1 ), and thus demonstrates a functional property for potential use in, for example, adsorption or heterogeneous catalysis.

5.
J Am Chem Soc ; 141(11): 4653-4659, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30802045

ABSTRACT

Mixed oxide hydride anion systems constitute a novel class of materials exhibiting intriguing properties such as solid-state hydride ion conduction and fast anion exchange. In this contribution we derive the kinetics of hydride ion transport in a mixed oxide-hydride system, SrTiO3- xH x, through isotope exchange and depth profiling. Density functional theory (DFT) calculations indicate that migration of H- to neighboring vacant oxygen lattice sites is fast, but that long-range transport is impeded by slow reorganization of the oxygen sublattice. From measured hydride tracer-diffusion coefficients and the correlation factors derived from DFT, we are able to derive the hydrogen self-diffusion coefficients in SrTiO3- xH x. More generally, the explicit description of hydride ion transport in SrTiO3- xH x through combination of experimental and computational methods reported in this work can be applied to explore anion diffusion in other mixed anion systems.

6.
Nanotechnology ; 30(22): 225702, 2019 May 31.
Article in English | MEDLINE | ID: mdl-30743257

ABSTRACT

Functionalizing transparent conducting oxides (TCOs) is an intriguing approach to expand the tunability and operation of optoelectronic devices. For example, forming nanoparticles that act as quantum wells or barriers in zinc oxide (ZnO), one of the main TCOs today, may expand its optical and electronic tunability. In this work, 800 keV Ge ions have been implanted at a dose of 1 × 1016 cm-2 into crystalline ZnO. After annealing at 1000 °C embedded disk-shaped particles with diameters up to 100 nm are formed. Scanning transmission electron microscopy shows that these are particles of the trigonal Zn2GeO4 phase. The particles are terminated by atomically sharp facets of the type {11 [Formula: see text] 0}, and the interface between the matrix and particles is decorated with misfit dislocations in order to accommodate the lattice mismatch between the two crystals. Electron energy loss spectroscopy has been employed to measure the band gap of individual nanoparticles, showing an onset of band-to-band transitions at 5.03 ± 0.02 eV. This work illustrates the advantages of using STEM characterization methods, where information of structure, growth, and properties can be directly obtained.

7.
Phys Chem Chem Phys ; 21(32): 17662-17672, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31364626

ABSTRACT

We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well.

8.
Nat Commun ; 14(1): 4855, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563159

ABSTRACT

Radiation tolerance is determined as the ability of crystalline materials to withstand the accumulation of the radiation induced disorder. Nevertheless, for sufficiently high fluences, in all by far known semiconductors it ends up with either very high disorder levels or amorphization. Here we show that gamma/beta (γ/ß) double polymorph Ga2O3 structures exhibit remarkably high radiation tolerance. Specifically, for room temperature experiments, they tolerate a disorder equivalent to hundreds of displacements per atom, without severe degradations of crystallinity; in comparison with, e.g., Si amorphizable already with the lattice atoms displaced just once. We explain this behavior by an interesting combination of the Ga- and O- sublattice properties in γ-Ga2O3. In particular, O-sublattice exhibits a strong recrystallization trend to recover the face-centered-cubic stacking despite the stronger displacement of O atoms compared to Ga during the active periods of cascades. Notably, we also explained the origin of the ß-to-γ Ga2O3 transformation, as a function of the increased disorder in ß-Ga2O3 and studied the phenomena as a function of the chemical nature of the implanted atoms. As a result, we conclude that γ/ß double polymorph Ga2O3 structures, in terms of their radiation tolerance properties, benchmark a class of universal radiation tolerant semiconductors.

9.
J Phys Condens Matter ; 35(6)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36379064

ABSTRACT

Plasmonic structures can help enhance optical activity in the ultraviolet (UV) region and therefore enhancing photocatalytic reactions and the detection of organic and biological species. Most plasmonic structures are composed of Ag or Au. However, producing structures small enough for optical activity in the UV region has proved difficult. In this study, we demonstrate that aluminium nanowires are an excellent alternative. We investigated the plasmonic properties of the Al nanowires as well as the optoelectronic properties of the surroundinga - Simatrix by combining scanning transmission electron microscopy imaging, electron energy loss spectroscopy and electrodynamic modelling. We have found that the Al nanowires have distinct plasmonic modes in the UV and far UV region, from 0.75 eV to 13 eV. In addition, simulated results found that the size and spacing of the Al nanowires, as well as the embedding material were shown to have a large impact on the type of surface plasmon energies that can be generated in the material. Using electromagnetic modelling, we have identified the modes and illustrated how they could be tuned further.

10.
Commun Chem ; 3(1): 162, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-36703339

ABSTRACT

Luminescent materials enable warm white LEDs, molecular tagging, enhanced optoelectronics and can improve energy harvesting. With the recent development of multi-step processes like down- and upconversion and the difficulty in sensitizing these, it is clear that optimizing all properties simultaneously is not possible within a single material class. In this work, we have utilized the layer-by-layer approach of atomic layer deposition to combine broad absorption from an aromatic molecule with the high emission yields of crystalline multi-layer lanthanide fluorides in a single-step nanocomposite process. This approach results in complete energy transfer from the organic molecule while providing inorganic fluoride-like lanthanide luminescence. Sm3+ is easily quenched by organic sensitizers, but in our case we obtain strong fluoride-like Sm3+ emission sensitized by strong UV absorption of terephthalic acid. This design allows combinations of otherwise incompatible species, both with respect to normally incompatible synthesis requirements and in controlling energy transfer and quenching routes.

11.
Materials (Basel) ; 12(6)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884841

ABSTRACT

The ZnCr2O4/ZnO materials system has a wide range of potential applications, for example, as a photocatalytic material for waste-water treatment and gas sensing. In this study, probe-corrected high-resolution scanning transmission electron microscopy and geometric phase analysis were utilized to study the dislocation structure and strain distribution at the interface between zinc oxide (ZnO) and embedded zinc chromium oxide (ZnCr2O4) particles. Ball-milled and dry-pressed ZnO and chromium oxide (α-Cr2O3) powder formed ZnCr2O4 inclusions in ZnO with size ~400 nm, where the interface properties depended on the interface orientation. In particular, sharp interfaces were observed for ZnO [2113]/ZnCr2O4 [110] orientations, while ZnO [1210]/ZnCr2O4 [112] orientations revealed an interface over several atomic layers, with a high density of dislocations. Further, monochromated electron energy-loss spectroscopy was employed to map the optical band gap of ZnCr2O4 nanoparticles in the ZnO matrix and their interface, where the average band gap of ZnCr2O4 nanoparticles was measured to be 3.84 ± 0.03 eV, in contrast to 3.22 ± 0.01 eV for the ZnO matrix.

12.
J Phys Chem Lett ; 10(16): 4725-4730, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31365264

ABSTRACT

Direct evidence of the formation of nitrogen molecules (N2) after ion implantion of ZnO has been revealed by an atomically resolved scanning transmission electron microscopy (STEM)-electron energy-loss spectroscopy (EELS) investigation. Taking advantage of the possibility of using multiple detectors simultaneously in aberration-corrected STEM, we utilize the detailed correlation between the atomic structure and chemical identification to develop a model explaining the formation and evolution of different defect types and their interaction with N. In particular, the formation of zinc vacancy (VZn) clusters filled with N2 after heat treatment at 650 °C was observed, clearly indicating that N has not been stabilized in the O substitution site, thus limiting p-type doping. Previous results showing an exceptional thermal stability of vacancy clusters only for the case of N-doped ZnO are supported. Furthermore, VZn-N2 stabilization leads to suppression of VZn-Zni recombination; hence, the highly mobile Zn interstitials preferentially condense on the basal planes promoting formation of extended defects (basal stacking faults and stacking mismatched boundaries). The terminations of these defects provide energetically favorable sites for further N2 trapping as a way to reduce local strain fields.

13.
Ultramicroscopy ; 184(Pt A): 39-45, 2018 01.
Article in English | MEDLINE | ID: mdl-28843183

ABSTRACT

Band gap variations in thin film structures, across grain boundaries, and in embedded nanoparticles are of increasing interest in the materials science community. As many common experimental techniques for measuring band gaps do not have the spatial resolution needed to observe these variations directly, probe-corrected Scanning Transmission Electron Microscope (STEM) with monochromated Electron Energy-Loss Spectroscopy (EELS) is a promising method for studying band gaps of such features. However, extraction of band gaps from EELS data sets usually requires heavy user involvement, and makes the analysis of large data sets challenging. Here we develop and present methods for automated extraction of band gap maps from large STEM-EELS data sets with high spatial resolution while preserving high accuracy and precision.

14.
Chem Commun (Camb) ; 54(59): 8253-8256, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29989111

ABSTRACT

We here report on atomic layer deposition (ALD) of the superconducting complex oxide La2-xSrxCuO4-y and provide details of the structural and electrical properties of such films. This is the first report on a complex oxide thin film with superconducting properties that has been deposited by atomic layer deposition.

15.
Sci Rep ; 8(1): 848, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29339788

ABSTRACT

Recent progresses in nanoscale semiconductor technology have heightened the need for measurements of band gaps with high spatial resolution. Band gap mapping can be performed through a combination of probe-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS), but are rare owing to the complexity of the experiments and the data analysis. Furthermore, although this method is far superior in terms of spatial resolution to any other techniques, it is still fundamentally resolution-limited due to inelastic delocalization of the EELS signal. In this work we have established a quantitative correlation between optical band gaps and plasmon energies using the Zn1-xCd x O/ZnO system as an example, thereby side-stepping the fundamental resolution limits of band gap measurements, and providing a simple and convenient approach to achieve band gap maps with unprecedented spatial resolution.

16.
Sci Rep ; 8(1): 8634, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872138

ABSTRACT

Silicon is often regarded as a likely candidate to replace graphite as the main active anode material in next-generation lithium ion batteries; however, a number of problems impacting its cycle stability have limited its commercial relevance. One approach to solving these issues involves the use of convertible silicon sub-oxides. In this work we have investigated amorphous silicon sub-nitride as an alternative convertible silicon compound by comparing the electrochemical performance of a-SiNx thin films with compositions ranging from pure Si to SiN0.89. We have found that increasing the nitrogen content gradually reduces the reversible capacity of the material, but also drastically increases its cycling stability, e.g. 40 nm a-SiN0.79 thin films exhibited a stable capacity of more than 1,500 mAh/g for 2,000 cycles. Consequently, by controlling the nitrogen content, this material has the exceptional ability to be tuned to satisfy a large range of different requirements for capacity and stability.

17.
Sci Rep ; 7(1): 13315, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042626

ABSTRACT

Silicon has been the subject of an extensive research effort aimed at developing new anode materials for lithium ion batteries due to its large specific and volumetric capacity. However, commercial use is limited by a number of degradation problems, many of which are related to the large volume change the material undergoes during cycling in combination with limited lithium-diffusivity. Silicon rich silicon oxides (SiOx), which converts into active silicon and inactive lithium oxide during the initial lithiation, have attracted some attention as a possible solution to these issues. In this work we present an investigation of silicon rich amorphous silicon nitride (a-SiNx) as an alternative convertible anode material. Amorphous SiN0.89 thin films deposited by plasma enhanced chemical vapour deposition show reversible reactions with lithium when cycled between 0.05 and 1.0 V vs. Li+/Li. This material delivers a reversible capacity of approximately 1,200 mAh/g and exhibits excellent cycling stability, with 41 nm a-SiN0.89 thin film electrodes showing negligible capacity degradation over more than 2,400 cycles.

19.
J Phys Condens Matter ; 23(26): 265502, 2011 Jul 06.
Article in English | MEDLINE | ID: mdl-21666302

ABSTRACT

The electronic structures of the two main compounds of the binary zinc antimonides that are stable at room temperature, Zn(1)Sb(1) and ß-Zn(4)Sb(3), were probed with x-ray photoelectron spectroscopy. Additionally, electron energy loss measurements and density functional theory calculations are presented. The compounds are found to share a very similar electronic structure. They both feature only small charge transfers and differ moderately in their screening potentials. These results are in line with recent theoretical works on the Zn-Sb system and are discussed in light of the reported thermoelectric performance of the materials.

SELECTION OF CITATIONS
SEARCH DETAIL