ABSTRACT
BACKGROUND: New-generation, cell-based assays have demonstrated a robust association of serum autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis, and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis (ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD). OBJECTIVE: To describe systematically the CSF profile in children with MOG-EM. MATERIAL AND METHODS: Cytological and biochemical findings (including white cell counts [WCC] and differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/serum ratios; intrathecal IgG/IgM/IgA fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster [MRZ] reaction; other anti-viral and anti-bacterial antibody indices; CSF total protein; CSF L-lactate) from 108 lumbar punctures in 80 pediatric patients of mainly Caucasian descent with MOG-EM were analyzed retrospectively. RESULTS: Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in 89% of samples (N = 96), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100% (N = 29). If present at all, intrathecal IgG synthesis was low, often transient and mostly restricted to acute attacks. Intrathecal IgM synthesis was present in 21% and exclusively detectable during acute attacks. CSF WCC were elevated in 54% of samples (median 40 cells/µl; range 6-256; mostly lymphocytes and monocytes; > 100/µl in 11%). Neutrophils were present in 71% of samples; eosinophils, activated lymphocytes, and plasma cells were seen only rarely (all < 7%). Blood-CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present in 46% of all samples (N = 79) and at least once in 48% of all patients (N = 67) tested. CSF alterations were significantly more frequent and/or more pronounced in patients with acute spinal cord or brain disease than in patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly with the spinal cord lesions load (measured in vertebral segments) in patients with acute myelitis (p = 0.0099). An analysis of pooled data from the pediatric and the adult cohort showed a significant relationship of QAlb (p < 0.0005), CST TP (p < 0.0001), and CSF L-lactate (p < 0.0003) during acute attacks with age. CONCLUSION: MOG-IgG-associated EM in children is characterized by CSF features that are distinct from those in MS. With regard to most parameters, no marked differences between the pediatric cohort and the adult cohort analyzed in Part 1 were noted. Our findings are important for the differential diagnosis of pediatric MS and MOG-EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.
Subject(s)
Autoantibodies/cerebrospinal fluid , Encephalomyelitis/immunology , Immunoglobulins/cerebrospinal fluid , Myelin-Oligodendrocyte Glycoprotein/immunology , Oligoclonal Bands/cerebrospinal fluid , Adolescent , Autoantibodies/blood , Child , Child, Preschool , Encephalomyelitis/blood , Encephalomyelitis/cerebrospinal fluid , Female , Humans , Immunoglobulins/blood , Infant , Male , Retrospective Studies , Spinal PunctureABSTRACT
Despite the availability of modern antibiotics, pneumococcal meningitis in both children and adults remains a severe disease-one known to frequently cause grave complications and residual disability. Although the appearance of arterial vasospasms in bacterial meningitis systematically has been investigated and reported on for adult patients, such research is lacking when it comes to infants. We report on a 4-week-old infant who, 6 days after onset of pneumococcal meningitis, suffered severe neurological deterioration with treatment-resistant seizures and coma. Generalized cortical and subcortical edema developed in conjunction with diminished cerebral blood flow, as depicted in magnetic resonance angiography and serial Doppler-sonographic examinations. The ischemia resulted in extensive cystic encephalomalacia. We propose that the degree of variation in cerebral blood flow in the acute phase was the result of an extensive arterial vasculopathy involving vasospasms. Awareness of this complication and prospective serial Doppler-sonographic examinations may improve our understanding of the connection between brain edema and vasculopathy. At present, however, no effective treatment appears available.
Subject(s)
Encephalomalacia/etiology , Meningitis, Pneumococcal/complications , Vasospasm, Intracranial/complications , Brain/diagnostic imaging , Encephalomalacia/diagnostic imaging , Encephalomalacia/therapy , Female , Humans , Infant , Meningitis, Pneumococcal/diagnostic imaging , Meningitis, Pneumococcal/therapy , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/therapyABSTRACT
BACKGROUND AND OBJECTIVE: The spectrum of myelin oligodendrocyte glycoprotein (MOG) antibody-associated disorder (MOGAD) comprises monophasic diseases such as acute disseminated encephalomyelitis (ADEM), optic neuritis (ON), and transverse myelitis and relapsing courses of these presentations. Persistently high MOG antibodies (MOG immunoglobulin G [IgG]) are found in patients with a relapsing disease course. Prognostic factors to determine the clinical course of children with a first MOGAD are still lacking. The objective of the study is to assess the clinical and laboratory prognostic parameters for a risk of relapse and the temporal dynamics of MOG-IgG titers in children with MOGAD in correlation with clinical presentation and disease course. METHODS: In this prospective multicenter hospital-based study, children with a first demyelinating attack and complete data set comprising clinical and radiologic findings, MOG-IgG titer at onset, and clinical and serologic follow-up data were included. Serum samples were analyzed by live cell-based assay, and a titer level of ≥1:160 was classified as MOG-IgG-positive. RESULTS: One hundred sixteen children (f:m = 57:59) with MOGAD were included and initially diagnosed with ADEM (n = 59), unilateral ON (n = 12), bilateral ON (n = 16), myelitis (n = 6), neuromyelitis optica spectrum disorder (n = 8) or encephalitis (n = 6). The median follow-up time was 3 years in monophasic and 5 years in relapsing patients. There was no significant association between disease course and MOG-IgG titers at onset, sex, age at presentation, or clinical phenotype. Seroconversion to MOG-IgG-negative within 2 years of the initial event showed a significant risk reduction for a relapsing disease course. Forty-two/one hundred sixteen patients (monophasic n = 26, relapsing n = 16) had serial MOG-IgG testing in years 1 and 2 after the initial event. In contrast to relapsing patients, monophasic patients showed a significant decrease of MOG-IgG titers during the first and second years, often with seroconversion to negative titers. During the follow-up, MOG-IgG titers were persistently higher in relapsing than in monophasic patients. Decrease in MOG-IgG of ≥3 dilution steps after the first and second years was shown to be associated with a decreased risk of relapses. In our cohort, no patient experienced a relapse after seroconversion to MOG-IgG-negative. DISCUSSION: In this study, patients with declining MOG-IgG titers, particularly those with seroconversion to MOG-IgG-negative, are shown to have a significantly reduced relapse risk.
Subject(s)
Encephalomyelitis, Acute Disseminated , Neuromyelitis Optica , Optic Neuritis , Humans , Immunoglobulin G , Myelin-Oligodendrocyte Glycoprotein , Neoplasm Recurrence, Local , Prospective Studies , SyndromeABSTRACT
BACKGROUND: Autoimmune encephalitis, such as anti-NMDA-receptor encephalitis, typically presenting with subacute onset of neuropsychiatric symptoms, can be detected by antineuronal autoantibodies or inflammatory changes in the cerebrospinal fluid (CSF), as well as pathological alterations in electroencephalography (EEG), magnetic resonance imaging (MRI), or [18F]fluorodeoxyglucose positron emission tomography (FDG PET). For patients with predominant psychotic symptoms, the term autoimmune psychosis was proposed. Here, the authors present the case of a patient with probable autoimmune psychosis associated with unknown antineuronal antibodies. CASE PRESENTATION: A 18-year-old male patient with preexisting autism spectrum disorder developed a severe catatonic syndrome over 2.5 years. The MRI showed normal findings, the EEG depicted intermittent slowing, and the independent component analyses showed additional sharp spikes. However, FDG PET, the basic laboratory analysis and testing of the serum/CSF for well-characterized antineuronal autoantibodies were unsuspicious. The serum and CSF "tissue-based assay" using indirect immunofluorescence on unfixed murine brain tissue revealed antineuronal autoantibodies against an unknown epitope in granule cells in the cerebellum and to neurites of hippocampal interneurons with a somatodendritic staining pattern. The immunosuppressive treatment with high-dose glucocorticoids, plasma exchange, and rituximab led to partial improvement. CONCLUSION: The patient probably suffered from autoantibody-associated autoimmune psychosis. The special features of the case were that the patient (1) presented with mostly inconspicuous basic diagnostics, except for the altered EEG in combination with the detection of CSF autoantibodies directed against a currently unknown epitope, (2) experienced an isolated and long-lasting psychotic course, and (3) had pre-existing autism spectrum disorder. The detection of a probable autoimmune pathophysiology in such cases seems important, as it offers new and more causal immunosuppressive treatment alternatives.