Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 100(6): 2629-39, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26572522

ABSTRACT

In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 µg/mL; EPS, 716.10 µg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 µg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 µg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities.


Subject(s)
Antineoplastic Agents/pharmacology , Colocasia/metabolism , Immunologic Factors/metabolism , Industrial Waste , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Caco-2 Cells , Cell Proliferation/drug effects , Culture Media/chemistry , HT29 Cells , Humans , Inhibitory Concentration 50 , Temperature
2.
J Sci Food Agric ; 92(2): 321-7, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-21800326

ABSTRACT

BACKGROUND: Sian-sianzih (fermented clams) is a popular traditional fermented food in Taiwan. The lactic acid bacteria (LAB) microflora in sian-sianzih have not been studied in detail. In this study, LAB from sian-sianzih were isolated, characterized and identified. RESULTS: A total of 186 cultures of LAB were isolated from seven sian-sianzih samples and 29 cultures were isolated from its main raw substrate: clams. The identification results revealed up to 11 distinct bacterial species belonging to five genera in sian-sianzih, and three species belonging to two genera in clams. The most common bacterial genera in sian-sianzih were Lactobacillus and Weissella, followed by Leuconostoc, Pediococcus and Lactococcus. A regional similarity in LAB, with differences in diversity, was observed in the current study. On the other hand, Lactococcus lactis subsp. lactis was the most common species found in raw clam samples. The results also suggested that greater LAB diversity could be observed in wild clams than in cultured ones. Furthermore, antibacterial activities of the isolates were determined, and one Weisella hellenica strain showed inhibitory activity against the indicator strain Lactobacilluas sakei JCM 1157(T) . A sensory assessment of seven sian-sianzih samples was also performed and the results indicated that diversity of LAB has a great effect on its aroma and taste formation. CONCLUSION: The results demonstrate that various LAB species are distributed in sian-sianzih and have a great effect on the flavor of sian-sianzih.


Subject(s)
Bivalvia/microbiology , Lactic Acid/metabolism , Lactobacillales/isolation & purification , Animals , Fermentation , Food Microbiology , Lactobacillales/classification , Sodium Chloride , Taiwan
3.
J Food Drug Anal ; 22(3): 391-398, 2014 Sep.
Article in English | MEDLINE | ID: mdl-28911430

ABSTRACT

To guarantee the safety of chocolate ice cream production, the Hazard Analysis Critical Control Points (HACCP) system was applied to the production process. The biological, chemical, and physical hazards that may exist in every step of chocolate ice cream production were identified. In addition, the critical control points were selected and the critical limits, monitoring, corrective measures, records, and verifications were established. The critical control points, which include pasteurization and freezing, were identified. Implementing the HACCP system in food manufacturing can effectively ensure food safety and quality, expand the market, and improve the manufacturers' management level.

SELECTION OF CITATIONS
SEARCH DETAIL